Keyword search (3,448 papers available)


TMS and H1-MRS measures of excitation and inhibition following lorazepam administration.

Author(s): Ferland MC, Therrien-Blanchet JM, Proulx S, Klees-Themens G, Bacon BA, Vu TTD, Théoret H

This study aimed at better understanding the neurochemistry underlying TMS and MRS measurements as it pertains to GABAergic activity following administration of allosteric GABAA receptor agonist lorazepam. Seventeen healthy adults (8 females, 26.0 ± 5.4 yea...

Article GUID: 33246064

Prefrontal Cortex and Multiparity in Lactation.

Author(s): Opala EA, Verlezza S, Long H, Rusu D, Woodside B, Walker CD

Neuroscience. 2019 Aug 19;: Authors: Opala EA, Verlezza S, Long H, Rusu D, Woodside B, Walker CD

Article GUID: 31437474

17β-Estradiol infusions into the dorsal striatum rapidly increase dorsal striatal dopamine release in vivo.

Author(s): Shams WM, Sanio C, Quinlan MG, Brake WG

Neuroscience. 2016 08 25;330:162-70 Authors: Shams WM, Sanio C, Quinlan MG, Brake WG

Article GUID: 27256507

Effect of electrolytic lesions of the dorsal diencephalic conduction system on the distribution of Fos-like immunoreactivity induced by rewarding electrical stimulation.

Author(s): Fakhoury M, Voyer D, Lévesque D, Rompré PP

Neuroscience. 2016 Oct 15;334:214-225 Authors: Fakhoury M, Voyer D, Lévesque D, Rompré PP

Article GUID: 27514573

Dopamine Signaling Is Critical for Supporting Cue-Driven Behavioral Control.

Author(s): Iordanova MD

Neuroscience. 2019 May 17;: Authors: Iordanova MD

Article GUID: 31103706

Dopaminergic enhancement of excitatory synaptic transmission in layer II entorhinal neurons is dependent on D₁-like receptor-mediated signaling.

Author(s): Glovaci I, Caruana DA, Chapman CA

Neuroscience. 2014 Jan 31;258:74-83 Authors: Glovaci I, Caruana DA, Chapman CA

Article GUID: 24220689

Serotonin 5-HT1A Receptor-Mediated Reduction of Excitatory Synaptic Transmission in Layers II/III of the Parasubiculum.

Author(s): Carter F, Chapman CA

Neuroscience. 2019 May 15;406:325-332 Authors: Carter F, Chapman CA

Article GUID: 30902681


Title:Dopaminergic enhancement of excitatory synaptic transmission in layer II entorhinal neurons is dependent on D₁-like receptor-mediated signaling.
Authors:Glovaci ICaruana DAChapman CA
Link:https://www.ncbi.nlm.nih.gov/pubmed/24220689?dopt=Abstract
Category:Neuroscience
PMID:24220689
Dept Affiliation: PSYCHOLOGY
1 Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec H4B 1R6, Canada.
2 Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec H4B 1R6, Canada. Electronic address: andrew.chapman@concordia.ca.

Description:

Dopaminergic enhancement of excitatory synaptic transmission in layer II entorhinal neurons is dependent on D1-like receptor-mediated signaling.

Neuroscience. 2014 Jan 31;258:74-83

Authors: Glovaci I, Caruana DA, Chapman CA

Abstract

The modulatory neurotransmitter dopamine induces concentration-dependent changes in synaptic transmission in the entorhinal cortex, in which high concentrations of dopamine suppress evoked excitatory postsynaptic potentials (EPSPs) and lower concentrations induce an acute synaptic facilitation. Whole-cell current-clamp recordings were used to investigate the dopaminergic facilitation of synaptic responses in layer II neurons of the rat lateral entorhinal cortex. A constant bath application of 1 µM dopamine resulted in a consistent facilitation of EPSPs evoked in layer II fan cells by layer I stimulation; the size of the facilitation was more variable in pyramidal neurons, and synaptic responses in a small group of multiform neurons were not modulated by dopamine. Isolated inhibitory synaptic responses were not affected by dopamine, and the facilitation of EPSPs was not associated with a change in paired-pulse facilitation ratio. Voltage-clamp recordings of a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) glutamate receptor-mediated excitatory postsynaptic currents (EPSCs) were facilitated by dopamine, but N-methyl-D-aspartate receptor-mediated currents were not. Bath application of the dopamine D1-like receptor blocker SCH23390 (50 µM), but not the D2-like receptor blocker sulpiride (50 µM), prevented the facilitation, indicating that it is dependent upon D1-like receptor activation. Dopamine D1 receptors lead to activation of protein kinase A (PKA), and including the PKA inhibitor H-89 or KT 5720 in the recording pipette solution prevented the facilitation of EPSCs. PKA-dependent phosphorylation of inhibitor 1 or the dopamine- and cAMP-regulated protein phosphatase (DARPP-32) can lead to a facilitation of AMPA receptor responses by inhibiting the activity of protein phosphatase 1 (PP1) that reduces dephosphorylation of AMPA receptors, and we found here that inhibition of PP1 occluded the facilitatory effect of dopamine. The dopamine-induced facilitation of AMPA receptor-mediated synaptic responses in layer II neurons of the lateral entorhinal cortex is therefore likely mediated via a D1 receptor-dependent increase in PKA activity and a resulting inhibition in PP1-dependent dephosphorylation of AMPA receptors.

PMID: 24220689 [PubMed - indexed for MEDLINE]