Keyword search (3,447 papers available)


The priming effect of food persists following blockade of dopamine receptors.

Author(s): Evangelista C, Hantson A, Shams WM, Almey A, Pileggi M, Voisard JR, Boulos V, Al-Qadri Y, Gonzalez Cautela BV, Zhou FX, Duchemin J, Habrich ...

Eur J Neurosci. 2019 Jul 27;: Authors: Evangelista C, Hantson A, Shams WM, Almey A, Pileggi M, Voisard JR, Boulos V, Al-Qadri Y, Gonzalez Cautela BV, Zhou FX, Duchemin J, Habrich A, Tito N, Koumro...

Article GUID: 31350860

Estrogen receptor α and G-protein coupled estrogen receptor 1 are localized to GABAergic neurons in the dorsal striatum.

Author(s): Almey A, Milner TA, Brake WG

Neurosci Lett. 2016 05 27;622:118-23 Authors: Almey A, Milner TA, Brake WG

Article GUID: 27080432

High estrogen and chronic haloperidol lead to greater amphetamine-induced BOLD activation in awake, amphetamine-sensitized female rats.

Author(s): Madularu D, Kulkarni P, Yee JR, Kenkel WM, Shams WM, Ferris CF, Brake WG

Horm Behav. 2016 06;82:56-63 Authors: Madularu D, Kulkarni P, Yee JR, Kenkel WM, Shams WM, Ferris CF, Brake WG

Article GUID: 27154458

Modulation of spatial and response strategies by phase of the menstrual cycle in women tested in a virtual navigation task.

Author(s): Hussain D, Hanafi S, Konishi K, Brake WG, Bohbot VD

Psychoneuroendocrinology. 2016 08;70:108-17 Authors: Hussain D, Hanafi S, Konishi K, Brake WG, Bohbot VD

Article GUID: 27213559

17β-Estradiol infusions into the dorsal striatum rapidly increase dorsal striatal dopamine release in vivo.

Author(s): Shams WM, Sanio C, Quinlan MG, Brake WG

Neuroscience. 2016 08 25;330:162-70 Authors: Shams WM, Sanio C, Quinlan MG, Brake WG

Article GUID: 27256507

Interactions between estradiol and haloperidol on perseveration and reversal learning in amphetamine-sensitized female rats.

Author(s): Almey A, Arena L, Oliel J, Shams WM, Hafez N, Mancinelli C, Henning L, Tsanev A, Brake WG

Horm Behav. 2017 03;89:113-120 Authors: Almey A, Arena L, Oliel J, Shams WM, Hafez N, Mancinelli C, Henning L, Tsanev A, Brake WG

Article GUID: 28062232

17β-estradiol locally increases phasic dopamine release in the dorsal striatum.

Author(s): Shams WM, Cossette MP, Shizgal P, Brake WG

Neurosci Lett. 2018 02 05;665:29-32 Authors: Shams WM, Cossette MP, Shizgal P, Brake WG

Article GUID: 29175028

Modulatory effect of 17-β estradiol on performance of ovariectomized rats on the Shock-Probe test.

Author(s): Gervais NJ, Jacob S, Brake WG, Mumby DG

Physiol Behav. 2014 May 28;131:129-35 Authors: Gervais NJ, Jacob S, Brake WG, Mumby DG

Article GUID: 24768650

Changes in brain volume in response to estradiol levels, amphetamine sensitization and haloperidol treatment in awake female rats.

Author(s): Madularu D, Kulkarni P, Ferris CF, Brake WG

Brain Res. 2015 Aug 27;1618:100-10 Authors: Madularu D, Kulkarni P, Ferris CF, Brake WG

Article GUID: 26032742

Attenuation of dendritic spine density in the perirhinal cortex following 17β-Estradiol replacement in the rat.

Author(s): Gervais NJ, Mumby DG, Brake WG

Hippocampus. 2015 Nov;25(11):1212-6 Authors: Gervais NJ, Mumby DG, Brake WG

Article GUID: 26104963

Ovarian steroids alter dopamine receptor populations in the medial preoptic area of female rats: implications for sexual motivation, desire, and behaviour.

Author(s): Graham MD, Gardner Gregory J, Hussain D, Brake WG, Pfaus JG

Eur J Neurosci. 2015 Dec;42(12):3138-48 Authors: Graham MD, Gardner Gregory J, Hussain D, Brake WG, Pfaus JG

Article GUID: 26536143

High Oestradiol Replacement Reverses Response Memory Bias in Ovariectomised Female Rats Regardless of Dopamine Levels in the Dorsal Striatum.

Author(s): Hussain D, Cossette MP, Brake WG

J Neuroendocrinol. 2016 05;28(5): Authors: Hussain D, Cossette MP, Brake WG

Article GUID: 26929121

Intra-perirhinal cortex administration of estradiol, but not an ERβ agonist, modulates object-recognition memory in ovariectomized rats.

Author(s): Gervais NJ, Hamel LM, Brake WG, Mumby DG

Neurobiol Learn Mem. 2016 09;133:89-99 Authors: Gervais NJ, Hamel LM, Brake WG, Mumby DG

Article GUID: 27321161


Title:Interactions between estradiol and haloperidol on perseveration and reversal learning in amphetamine-sensitized female rats.
Authors:Almey AArena LOliel JShams WMHafez NMancinelli CHenning LTsanev ABrake WG
Link:https://www.ncbi.nlm.nih.gov/pubmed/28062232?dopt=Abstract
DOI:10.1016/j.yhbeh.2016.12.010
Category:Horm Behav
PMID:28062232
Dept Affiliation: PSYCHOLOGY
1 Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal, QC, Canada. Electronic address: anne.almey@gmail.com.
2 Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal, QC, Canada.
3 Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal, QC, Canada. Electronic address: waqqas19@gmail.com.
4 Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal, QC, Canada. Electronic address: wayne.brake@concordia.ca.

Description:

Interactions between estradiol and haloperidol on perseveration and reversal learning in amphetamine-sensitized female rats.

Horm Behav. 2017 03;89:113-120

Authors: Almey A, Arena L, Oliel J, Shams WM, Hafez N, Mancinelli C, Henning L, Tsanev A, Brake WG

Abstract

There are sex differences associated with schizophrenia, as women exhibit later onset of the disorder, less severe symptomatology, and better response to antipsychotic medications. Estrogens are thought to play a role in these sex differences; estrogens facilitate the effects of antipsychotic medications to reduce the positive symptoms of schizophrenia, but it remains unclear whether estrogens protect against the cognitive symptoms of this disorder. Amphetamine sensitization is used to model some symptoms of schizophrenia in rats, including cognitive deficits like excessive perseveration and slower reversal learning. In this experiment female rats were administered a sensitizing regimen of amphetamine to mimic these cognitive symptoms. They were ovariectomized and administered either low or high estradiol replacement as well as chronic administration of the antipsychotic haloperidol, and were assessed in tests of perseveration and reversal learning. Results of these experiments demonstrated that, in amphetamine-sensitized rats, estradiol alone does not affect perseveration or reversal learning. However, low estradiol facilitates a 0.25mg/day dose of haloperidol to reduce perseveration and improve reversal learning. Combined high estradiol and 0.25mg/day haloperidol has no effect on perseveration or reversal learning, but high estradiol facilitates the effects of 0.13mg/day haloperidol to reduce perseveration and improve reversal learning. Thus, in amphetamine-sensitized female rats, 0.25mg/day haloperidol only improved perseveration and reversal learning when estradiol was low, while 0.13mg/day haloperidol only improved these cognitive processes when estradiol was high. These findings suggest that estradiol facilitates the effects of haloperidol to improve perseveration and reversal learning in a dose-dependent manner.

PMID: 28062232 [PubMed - indexed for MEDLINE]