Keyword search (3,447 papers available)


The priming effect of food persists following blockade of dopamine receptors.

Author(s): Evangelista C, Hantson A, Shams WM, Almey A, Pileggi M, Voisard JR, Boulos V, Al-Qadri Y, Gonzalez Cautela BV, Zhou FX, Duchemin J, Habrich ...

Eur J Neurosci. 2019 Jul 27;: Authors: Evangelista C, Hantson A, Shams WM, Almey A, Pileggi M, Voisard JR, Boulos V, Al-Qadri Y, Gonzalez Cautela BV, Zhou FX, Duchemin J, Habrich A, Tito N, Koumro...

Article GUID: 31350860

Estrogen receptor α and G-protein coupled estrogen receptor 1 are localized to GABAergic neurons in the dorsal striatum.

Author(s): Almey A, Milner TA, Brake WG

Neurosci Lett. 2016 05 27;622:118-23 Authors: Almey A, Milner TA, Brake WG

Article GUID: 27080432

High estrogen and chronic haloperidol lead to greater amphetamine-induced BOLD activation in awake, amphetamine-sensitized female rats.

Author(s): Madularu D, Kulkarni P, Yee JR, Kenkel WM, Shams WM, Ferris CF, Brake WG

Horm Behav. 2016 06;82:56-63 Authors: Madularu D, Kulkarni P, Yee JR, Kenkel WM, Shams WM, Ferris CF, Brake WG

Article GUID: 27154458

Modulation of spatial and response strategies by phase of the menstrual cycle in women tested in a virtual navigation task.

Author(s): Hussain D, Hanafi S, Konishi K, Brake WG, Bohbot VD

Psychoneuroendocrinology. 2016 08;70:108-17 Authors: Hussain D, Hanafi S, Konishi K, Brake WG, Bohbot VD

Article GUID: 27213559

17β-Estradiol infusions into the dorsal striatum rapidly increase dorsal striatal dopamine release in vivo.

Author(s): Shams WM, Sanio C, Quinlan MG, Brake WG

Neuroscience. 2016 08 25;330:162-70 Authors: Shams WM, Sanio C, Quinlan MG, Brake WG

Article GUID: 27256507

Interactions between estradiol and haloperidol on perseveration and reversal learning in amphetamine-sensitized female rats.

Author(s): Almey A, Arena L, Oliel J, Shams WM, Hafez N, Mancinelli C, Henning L, Tsanev A, Brake WG

Horm Behav. 2017 03;89:113-120 Authors: Almey A, Arena L, Oliel J, Shams WM, Hafez N, Mancinelli C, Henning L, Tsanev A, Brake WG

Article GUID: 28062232

17β-estradiol locally increases phasic dopamine release in the dorsal striatum.

Author(s): Shams WM, Cossette MP, Shizgal P, Brake WG

Neurosci Lett. 2018 02 05;665:29-32 Authors: Shams WM, Cossette MP, Shizgal P, Brake WG

Article GUID: 29175028

Modulatory effect of 17-β estradiol on performance of ovariectomized rats on the Shock-Probe test.

Author(s): Gervais NJ, Jacob S, Brake WG, Mumby DG

Physiol Behav. 2014 May 28;131:129-35 Authors: Gervais NJ, Jacob S, Brake WG, Mumby DG

Article GUID: 24768650

Changes in brain volume in response to estradiol levels, amphetamine sensitization and haloperidol treatment in awake female rats.

Author(s): Madularu D, Kulkarni P, Ferris CF, Brake WG

Brain Res. 2015 Aug 27;1618:100-10 Authors: Madularu D, Kulkarni P, Ferris CF, Brake WG

Article GUID: 26032742

Attenuation of dendritic spine density in the perirhinal cortex following 17β-Estradiol replacement in the rat.

Author(s): Gervais NJ, Mumby DG, Brake WG

Hippocampus. 2015 Nov;25(11):1212-6 Authors: Gervais NJ, Mumby DG, Brake WG

Article GUID: 26104963

Ovarian steroids alter dopamine receptor populations in the medial preoptic area of female rats: implications for sexual motivation, desire, and behaviour.

Author(s): Graham MD, Gardner Gregory J, Hussain D, Brake WG, Pfaus JG

Eur J Neurosci. 2015 Dec;42(12):3138-48 Authors: Graham MD, Gardner Gregory J, Hussain D, Brake WG, Pfaus JG

Article GUID: 26536143

High Oestradiol Replacement Reverses Response Memory Bias in Ovariectomised Female Rats Regardless of Dopamine Levels in the Dorsal Striatum.

Author(s): Hussain D, Cossette MP, Brake WG

J Neuroendocrinol. 2016 05;28(5): Authors: Hussain D, Cossette MP, Brake WG

Article GUID: 26929121

Intra-perirhinal cortex administration of estradiol, but not an ERβ agonist, modulates object-recognition memory in ovariectomized rats.

Author(s): Gervais NJ, Hamel LM, Brake WG, Mumby DG

Neurobiol Learn Mem. 2016 09;133:89-99 Authors: Gervais NJ, Hamel LM, Brake WG, Mumby DG

Article GUID: 27321161


Title:High estrogen and chronic haloperidol lead to greater amphetamine-induced BOLD activation in awake, amphetamine-sensitized female rats.
Authors:Madularu DKulkarni PYee JRKenkel WMShams WMFerris CFBrake WG
Link:https://www.ncbi.nlm.nih.gov/pubmed/27154458?dopt=Abstract
DOI:10.1016/j.yhbeh.2016.04.007
Category:Horm Behav
PMID:27154458
Dept Affiliation: CSBN
1 Concordia University, Department of Psychology, Center for Studies in Behavioural Neurobiology, 7141 Sherbrooke St. West, Montreal, QC, Canada, H4B 1R6. Electronic address: dan.madularu@gmail.com.
2 Northeastern University, Department of Psychology, Center for Translational Neuroimaging, 360 Huntington Ave, Boston, MA, USA, 02115.
3 Concordia University, Department of Psychology, Center for Studies in Behavioural Neurobiology, 7141 Sherbrooke St. West, Montreal, QC, Canada, H4B 1R6.

Description:

High estrogen and chronic haloperidol lead to greater amphetamine-induced BOLD activation in awake, amphetamine-sensitized female rats.

Horm Behav. 2016 06;82:56-63

Authors: Madularu D, Kulkarni P, Yee JR, Kenkel WM, Shams WM, Ferris CF, Brake WG

Abstract

The ovarian hormone estrogen has been implicated in schizophrenia symptomatology. Low levels of estrogen are associated with an increase in symptom severity, while exogenous estrogen increases the efficacy of antipsychotic medication, pointing at a possible interaction between estrogen and the dopaminergic system. The aim of this study is to further investigate this interaction in an animal model of some aspects of schizophrenia using awake functional magnetic resonance imaging. Animals receiving 17ß-estradiol and haloperidol were scanned and BOLD activity was assessed in response to amphetamine. High 17ß-estradiol replacement and chronic haloperidol treatment showed increased BOLD activity in regions of interest and neural networks associated with schizophrenia (hippocampal formations, habenula, amygdala, hypothalamus etc.), compared with low, or no 17ß-estradiol. These data show that chronic haloperidol treatment has a sensitizing effect, possibly on the dopaminergic system, and this effect is dependent on hormonal status, with high 17ß-estradiol showing the greatest BOLD increase. Furthermore, these experiments further support the use of imaging techniques in studying schizophrenia, as modeled in the rat, but can be extended to addiction and other disorders.

PMID: 27154458 [PubMed - indexed for MEDLINE]