Keyword search (3,448 papers available)


Integrative approach for detecting membrane proteins.

Author(s): Alballa M, Butler G

BACKGROUND: Membrane proteins are key gates that control various vital cellular functions. Membrane proteins are often detected using transmembrane topology prediction tools. While transmembrane topology prediction tools can detect integral membrane protein...

Article GUID: 33349234

BENIN: Biologically enhanced network inference.

Author(s): Wonkap SK, Butler G

J Bioinform Comput Biol. 2020 Jun;18(3):2040007 Authors: Wonkap SK, Butler G

Article GUID: 32698722

TooT-T: discrimination of transport proteins from non-transport proteins.

Author(s): Alballa M, Butler G

BMC Bioinformatics. 2020 Apr 23;21(Suppl 3):25 Authors: Alballa M, Butler G

Article GUID: 32321420

TranCEP: Predicting the substrate class of transmembrane transport proteins using compositional, evolutionary, and positional information.

Author(s): Alballa M, Aplop F, Butler G

PLoS One. 2020;15(1):e0227683 Authors: Alballa M, Aplop F, Butler G

Article GUID: 31935244

Analytical and computational approaches to define the Aspergillus niger secretome.

Author(s): Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE

Fungal Genet Biol. 2009 Mar;46 Suppl 1:S153-S160 Authors: Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE

Article GUID: 19618504

SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models.

Author(s): Reid I, O'Toole N, Zabaneh O, Nourzadeh R, Dahdouli M, Abdellateef M, Gordon PM, Soh J, Butler G, Sensen CW, Tsang A

BMC Bioinformatics. 2014 Jul 01;15:229 Authors: Reid I, O'Toole N, Zabaneh O, Nourzadeh R, Dahdouli M, Abdellateef M, Gordon PM, Soh J, Butler G, Sensen CW, Tsang A

Article GUID: 24980894

Machine learning for biomedical literature triage.

Author(s): Almeida H, Meurs MJ, Kosseim L, Butler G, Tsang A

PLoS One. 2014;9(12):e115892 Authors: Almeida H, Meurs MJ, Kosseim L, Butler G, Tsang A

Article GUID: 25551575

mycoCLAP, the database for characterized lignocellulose-active proteins of fungal origin: resource and text mining curation support.

Author(s): Strasser K, McDonnell E, Nyaga C, Wu M, Wu S, Almeida H, Meurs MJ, Kosseim L, Powlowski J, Butler G, Tsang A

Database (Oxford). 2015;2015: Authors: Strasser K, McDonnell E, Nyaga C, Wu M, Wu S, Almeida H, Meurs MJ, Kosseim L, Powlowski J, Butler G, Tsang A

Article GUID: 25754864

An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures.

Author(s): Zandi K, Butler G, Kharma N

Front Genet. 2016;7:129 Authors: Zandi K, Butler G, Kharma N

Article GUID: 27499762


Title:TranCEP: Predicting the substrate class of transmembrane transport proteins using compositional, evolutionary, and positional information.
Authors:Alballa MAplop FButler G
Link:https://www.ncbi.nlm.nih.gov/pubmed/31935244?dopt=Abstract
DOI:10.1371/journal.pone.0227683
Category:PLoS One
PMID:31935244
Dept Affiliation: GENOMICS
1 Department of Computer Science and Software Engineering, Concordia University, Montréal, Québec, Canada.
2 College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia.
3 School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, Malaysia.
4 Centre for Structural and Functional Genomics, Concordia University, Montréal, Québec, Canada.

Description:

TranCEP: Predicting the substrate class of transmembrane transport proteins using compositional, evolutionary, and positional information.

PLoS One. 2020;15(1):e0227683

Authors: Alballa M, Aplop F, Butler G

Abstract

Transporters mediate the movement of compounds across the membranes that separate the cell from its environment and across the inner membranes surrounding cellular compartments. It is estimated that one third of a proteome consists of membrane proteins, and many of these are transport proteins. Given the increase in the number of genomes being sequenced, there is a need for computational tools that predict the substrates that are transported by the transmembrane transport proteins. In this paper, we present TranCEP, a predictor of the type of substrate transported by a transmembrane transport protein. TranCEP combines the traditional use of the amino acid composition of the protein, with evolutionary information captured in a multiple sequence alignment (MSA), and restriction to important positions of the alignment that play a role in determining the specificity of the protein. Our experimental results show that TranCEP significantly outperforms the state-of-the-art predictors. The results quantify the contribution made by each type of information used.

PMID: 31935244 [PubMed - in process]