Keyword search (3,448 papers available)


Integrative approach for detecting membrane proteins.

Author(s): Alballa M, Butler G

BACKGROUND: Membrane proteins are key gates that control various vital cellular functions. Membrane proteins are often detected using transmembrane topology prediction tools. While transmembrane topology prediction tools can detect integral membrane protein...

Article GUID: 33349234

BENIN: Biologically enhanced network inference.

Author(s): Wonkap SK, Butler G

J Bioinform Comput Biol. 2020 Jun;18(3):2040007 Authors: Wonkap SK, Butler G

Article GUID: 32698722

TooT-T: discrimination of transport proteins from non-transport proteins.

Author(s): Alballa M, Butler G

BMC Bioinformatics. 2020 Apr 23;21(Suppl 3):25 Authors: Alballa M, Butler G

Article GUID: 32321420

TranCEP: Predicting the substrate class of transmembrane transport proteins using compositional, evolutionary, and positional information.

Author(s): Alballa M, Aplop F, Butler G

PLoS One. 2020;15(1):e0227683 Authors: Alballa M, Aplop F, Butler G

Article GUID: 31935244

Analytical and computational approaches to define the Aspergillus niger secretome.

Author(s): Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE

Fungal Genet Biol. 2009 Mar;46 Suppl 1:S153-S160 Authors: Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE

Article GUID: 19618504

SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models.

Author(s): Reid I, O'Toole N, Zabaneh O, Nourzadeh R, Dahdouli M, Abdellateef M, Gordon PM, Soh J, Butler G, Sensen CW, Tsang A

BMC Bioinformatics. 2014 Jul 01;15:229 Authors: Reid I, O'Toole N, Zabaneh O, Nourzadeh R, Dahdouli M, Abdellateef M, Gordon PM, Soh J, Butler G, Sensen CW, Tsang A

Article GUID: 24980894

Machine learning for biomedical literature triage.

Author(s): Almeida H, Meurs MJ, Kosseim L, Butler G, Tsang A

PLoS One. 2014;9(12):e115892 Authors: Almeida H, Meurs MJ, Kosseim L, Butler G, Tsang A

Article GUID: 25551575

mycoCLAP, the database for characterized lignocellulose-active proteins of fungal origin: resource and text mining curation support.

Author(s): Strasser K, McDonnell E, Nyaga C, Wu M, Wu S, Almeida H, Meurs MJ, Kosseim L, Powlowski J, Butler G, Tsang A

Database (Oxford). 2015;2015: Authors: Strasser K, McDonnell E, Nyaga C, Wu M, Wu S, Almeida H, Meurs MJ, Kosseim L, Powlowski J, Butler G, Tsang A

Article GUID: 25754864

An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures.

Author(s): Zandi K, Butler G, Kharma N

Front Genet. 2016;7:129 Authors: Zandi K, Butler G, Kharma N

Article GUID: 27499762


Title:Machine learning for biomedical literature triage.
Authors:Almeida HMeurs MJKosseim LButler GTsang A
Link:https://www.ncbi.nlm.nih.gov/pubmed/25551575?dopt=Abstract
DOI:10.1371/journal.pone.0115892
Category:PLoS One
PMID:25551575
Dept Affiliation: GENOMICS
1 Department of Computer Science and Software Engineering, Concordia University, Montreal, QC, Canada.
2 Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada.
3 Department of Computer Science and Software Engineering, Concordia University, Montreal, QC, Canada; Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada.

Description:

Machine learning for biomedical literature triage.

PLoS One. 2014;9(12):e115892

Authors: Almeida H, Meurs MJ, Kosseim L, Butler G, Tsang A

Abstract

This paper presents a machine learning system for supporting the first task of the biological literature manual curation process, called triage. We compare the performance of various classification models, by experimenting with dataset sampling factors and a set of features, as well as three different machine learning algorithms (Naive Bayes, Support Vector Machine and Logistic Model Trees). The results show that the most fitting model to handle the imbalanced datasets of the triage classification task is obtained by using domain relevant features, an under-sampling technique, and the Logistic Model Trees algorithm.

PMID: 25551575 [PubMed - indexed for MEDLINE]