Keyword search (3,448 papers available)


Integrative approach for detecting membrane proteins.

Author(s): Alballa M, Butler G

BACKGROUND: Membrane proteins are key gates that control various vital cellular functions. Membrane proteins are often detected using transmembrane topology prediction tools. While transmembrane topology prediction tools can detect integral membrane protein...

Article GUID: 33349234

BENIN: Biologically enhanced network inference.

Author(s): Wonkap SK, Butler G

J Bioinform Comput Biol. 2020 Jun;18(3):2040007 Authors: Wonkap SK, Butler G

Article GUID: 32698722

TooT-T: discrimination of transport proteins from non-transport proteins.

Author(s): Alballa M, Butler G

BMC Bioinformatics. 2020 Apr 23;21(Suppl 3):25 Authors: Alballa M, Butler G

Article GUID: 32321420

TranCEP: Predicting the substrate class of transmembrane transport proteins using compositional, evolutionary, and positional information.

Author(s): Alballa M, Aplop F, Butler G

PLoS One. 2020;15(1):e0227683 Authors: Alballa M, Aplop F, Butler G

Article GUID: 31935244

Analytical and computational approaches to define the Aspergillus niger secretome.

Author(s): Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE

Fungal Genet Biol. 2009 Mar;46 Suppl 1:S153-S160 Authors: Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE

Article GUID: 19618504

SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models.

Author(s): Reid I, O'Toole N, Zabaneh O, Nourzadeh R, Dahdouli M, Abdellateef M, Gordon PM, Soh J, Butler G, Sensen CW, Tsang A

BMC Bioinformatics. 2014 Jul 01;15:229 Authors: Reid I, O'Toole N, Zabaneh O, Nourzadeh R, Dahdouli M, Abdellateef M, Gordon PM, Soh J, Butler G, Sensen CW, Tsang A

Article GUID: 24980894

Machine learning for biomedical literature triage.

Author(s): Almeida H, Meurs MJ, Kosseim L, Butler G, Tsang A

PLoS One. 2014;9(12):e115892 Authors: Almeida H, Meurs MJ, Kosseim L, Butler G, Tsang A

Article GUID: 25551575

mycoCLAP, the database for characterized lignocellulose-active proteins of fungal origin: resource and text mining curation support.

Author(s): Strasser K, McDonnell E, Nyaga C, Wu M, Wu S, Almeida H, Meurs MJ, Kosseim L, Powlowski J, Butler G, Tsang A

Database (Oxford). 2015;2015: Authors: Strasser K, McDonnell E, Nyaga C, Wu M, Wu S, Almeida H, Meurs MJ, Kosseim L, Powlowski J, Butler G, Tsang A

Article GUID: 25754864

An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures.

Author(s): Zandi K, Butler G, Kharma N

Front Genet. 2016;7:129 Authors: Zandi K, Butler G, Kharma N

Article GUID: 27499762


Title:SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models.
Authors:Reid IO'Toole NZabaneh ONourzadeh RDahdouli MAbdellateef MGordon PMSoh JButler GSensen CWTsang A
Link:https://www.ncbi.nlm.nih.gov/pubmed/24980894?dopt=Abstract
DOI:10.1186/1471-2105-15-229
Category:BMC Bioinformatics
PMID:24980894
Dept Affiliation: GENOMICS
1 Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St, W, Montreal, QC H4B 1R6, Canada. ian.reid@concordia.ca.

Description:

SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models.

BMC Bioinformatics. 2014 Jul 01;15:229

Authors: Reid I, O'Toole N, Zabaneh O, Nourzadeh R, Dahdouli M, Abdellateef M, Gordon PM, Soh J, Butler G, Sensen CW, Tsang A

Abstract

BACKGROUND: Locating the protein-coding genes in novel genomes is essential to understanding and exploiting the genomic information but it is still difficult to accurately predict all the genes. The recent availability of detailed information about transcript structure from high-throughput sequencing of messenger RNA (RNA-Seq) delineates many expressed genes and promises increased accuracy in gene prediction. Computational gene predictors have been intensively developed for and tested in well-studied animal genomes. Hundreds of fungal genomes are now or will soon be sequenced. The differences of fungal genomes from animal genomes and the phylogenetic sparsity of well-studied fungi call for gene-prediction tools tailored to them.

RESULTS: SnowyOwl is a new gene prediction pipeline that uses RNA-Seq data to train and provide hints for the generation of Hidden Markov Model (HMM)-based gene predictions and to evaluate the resulting models. The pipeline has been developed and streamlined by comparing its predictions to manually curated gene models in three fungal genomes and validated against the high-quality gene annotation of Neurospora crassa; SnowyOwl predicted N. crassa genes with 83% sensitivity and 65% specificity. SnowyOwl gains sensitivity by repeatedly running the HMM gene predictor Augustus with varied input parameters and selectivity by choosing the models with best homology to known proteins and best agreement with the RNA-Seq data.

CONCLUSIONS: SnowyOwl efficiently uses RNA-Seq data to produce accurate gene models in both well-studied and novel fungal genomes. The source code for the SnowyOwl pipeline (in Python) and a web interface (in PHP) is freely available from http://sourceforge.net/projects/snowyowl/.

PMID: 24980894 [PubMed - indexed for MEDLINE]