Keyword search (3,676 papers available)


Molecular mechanisms of neurodegeneration in the entorhinal cortex that underlie its selective vulnerability during the pathogenesis of Alzheimer's disease.

Author(s): Olajide OJ, Suvanto ME, Chapman CA

The entorhinal cortex (EC) is a vital component of the medial temporal lobe, and its contributions to cognitive processes and memory formation are supported through its extensive interconnections with the hippocampal formation. During the pathogenesis of Al...

Article GUID: 33495355

State-Dependent Entrainment of Prefrontal Cortex Local Field Potential Activity Following Patterned Stimulation of the Cerebellar Vermis.

Author(s): Tremblay SA, Chapman CA, Courtemanche R

Front Syst Neurosci. 2019;13:60 Authors: Tremblay SA, Chapman CA, Courtemanche R

Article GUID: 31736718

Heterosynaptic modulation of evoked synaptic potentials in layer II of the entorhinal cortex by activation of the parasubiculum.

Author(s): Sparks DW, Chapman CA

J Neurophysiol. 2016 08 01;116(2):658-70 Authors: Sparks DW, Chapman CA

Article GUID: 27146979

Gap Junction Modulation of Low-Frequency Oscillations in the Cerebellar Granule Cell Layer.

Author(s): Robinson JC, Chapman CA, Courtemanche R

Cerebellum. 2017 08;16(4):802-811 Authors: Robinson JC, Chapman CA, Courtemanche R

Article GUID: 28421552

Exposure to cues associated with palatable food reward results in a dopamine D₂ receptor-dependent suppression of evoked synaptic responses in the entorhinal cortex.

Author(s): Hutter JA, Chapman CA

Behav Brain Funct. 2013 Oct 04;9:37 Authors: Hutter JA, Chapman CA

Article GUID: 24093833

Dopaminergic enhancement of excitatory synaptic transmission in layer II entorhinal neurons is dependent on D₁-like receptor-mediated signaling.

Author(s): Glovaci I, Caruana DA, Chapman CA

Neuroscience. 2014 Jan 31;258:74-83 Authors: Glovaci I, Caruana DA, Chapman CA

Article GUID: 24220689

Diurnal influences on electrophysiological oscillations and coupling in the dorsal striatum and cerebellar cortex of the anesthetized rat.

Author(s): Frederick A, Bourget-Murray J, Chapman CA, Amir S, Courtemanche R

Front Syst Neurosci. 2014;8:145 Authors: Frederick A, Bourget-Murray J, Chapman CA, Amir S, Courtemanche R

Article GUID: 25309348

Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex.

Author(s): Glovaci I, Chapman CA

PLoS One. 2015;10(7):e0131948 Authors: Glovaci I, Chapman CA

Article GUID: 26133167

Optogenetic Activation of the Infralimbic Cortex Suppresses the Return of Appetitive Pavlovian-Conditioned Responding Following Extinction.

Author(s): Villaruel FR, Lacroix F, Sanio C, Sparks DW, Chapman CA, Chaudhri N

Cereb Cortex. 2018 Dec 01;28(12):4210-4221 Authors: Villaruel FR, Lacroix F, Sanio C, Sparks DW, Chapman CA, Chaudhri N

Article GUID: 29045570

Dopamine suppresses persistent firing in layer III lateral entorhinal cortex neurons.

Author(s): Batallán-Burrowes AA, Chapman CA

Neurosci Lett. 2018 05 01;674:70-74 Authors: Batallán-Burrowes AA, Chapman CA

Article GUID: 29524644

The role of the paraventricular nucleus of the thalamus in the augmentation of heroin seeking induced by chronic food restriction.

Author(s): Chisholm A, Iannuzzi J, Rizzo D, Gonzalez N, Fortin É, Bumbu A, Batallán Burrowes AA, Chapman CA, Shalev U

Addict Biol. 2019 Jan 09;: Authors: Chisholm A, Iannuzzi J, Rizzo D, Gonzalez N, Fortin É, Bumbu A, Batallán Burrowes AA, Chapman CA, Shalev U

Article GUID: 30623532

Serotonin 5-HT1A Receptor-Mediated Reduction of Excitatory Synaptic Transmission in Layers II/III of the Parasubiculum.

Author(s): Carter F, Chapman CA

Neuroscience. 2019 May 15;406:325-332 Authors: Carter F, Chapman CA

Article GUID: 30902681

Dopamine induces release of calcium from internal stores in layer II lateral entorhinal cortex fan cells.

Author(s): Glovaci I, Chapman CA

Cell Calcium. 2019 Apr 10;80:103-111 Authors: Glovaci I, Chapman CA

Article GUID: 30999216


Title:Heterosynaptic modulation of evoked synaptic potentials in layer II of the entorhinal cortex by activation of the parasubiculum.
Authors:Sparks DWChapman CA
Link:https://www.ncbi.nlm.nih.gov/pubmed/27146979?dopt=Abstract
DOI:10.1152/jn.00095.2016
Category:J Neurophysiol
PMID:27146979
Dept Affiliation: PSYCHOLOGY
1 Centre for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada.
2 Centre for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada andrew.chapman@concordia.ca.

Description:

Heterosynaptic modulation of evoked synaptic potentials in layer II of the entorhinal cortex by activation of the parasubiculum.

J Neurophysiol. 2016 08 01;116(2):658-70

Authors: Sparks DW, Chapman CA

Abstract

The superficial layers of the entorhinal cortex receive sensory and associational cortical inputs and provide the hippocampus with the majority of its cortical sensory input. The parasubiculum, which receives input from multiple hippocampal subfields, sends its single major output projection to layer II of the entorhinal cortex, suggesting that it may modulate processing of synaptic inputs to the entorhinal cortex. Indeed, stimulation of the parasubiculum can enhance entorhinal responses to synaptic input from the piriform cortex in vivo. Theta EEG activity contributes to spatial and mnemonic processes in this region, and the current study assessed how stimulation of the parasubiculum with either single pulses or short, five-pulse, theta-frequency trains may modulate synaptic responses in layer II entorhinal stellate neurons evoked by stimulation of layer I afferents in vitro. Parasubicular stimulation pulses or trains suppressed responses to layer I stimulation at intervals of 5 ms, and parasubicular stimulation trains facilitated layer I responses at a train-pulse interval of 25 ms. This suggests that firing of parasubicular neurons during theta activity may heterosynaptically enhance incoming sensory inputs to the entorhinal cortex. Bath application of the hyperpolarization-activated cation current (Ih) blocker ZD7288 enhanced the facilitation effect, suggesting that cholinergic inhibition of Ih may contribute. In addition, repetitive pairing of parasubicular trains and layer I stimulation induced a lasting depression of entorhinal responses to layer I stimulation. These findings provide evidence that theta activity in the parasubiculum may promote heterosynaptic modulation effects that may alter sensory processing in the entorhinal cortex.

PMID: 27146979 [PubMed - indexed for MEDLINE]