Keyword search (3,448 papers available)


Simulation and computer modeling of asphaltene in different solvents on oil-water interfaces using a molecular dynamic methodology.

Author(s): Yuan J, Elektorowicz M, Chen Z, Segun GA, Vakili M, Zhong L, Wang B, Zhu J, Wu Y

J Mol Graph Model. 2019 Sep 13;93:107450 Authors: Yuan J, Elektorowicz M, Chen Z, Segun GA, Vakili M, Zhong L, Wang B, Zhu J, Wu Y

Article GUID: 31542686

Extended environmental multimedia modeling system assessing the risk carried by pollutants in interacted air-unsaturated-groundwater zones.

Author(s): Yuan J, Elektorowicz M

J Hazard Mater. 2019 Jul 22;381:120852 Authors: Yuan J, Elektorowicz M

Article GUID: 31376662

Electro-demulsification of water-in-oil suspensions enhanced with implementing various additives.

Author(s): Taslimi Taleghani S, Fellah Jahromi A, Elektorowicz M

Chemosphere. 2019 May 20;233:157-163 Authors: Taslimi Taleghani S, Fellah Jahromi A, Elektorowicz M

Article GUID: 31173953

Comparison of constant, pulsed, incremental and decremental direct current applications on solid-liquid phase separation in oil sediments.

Author(s): Kariminezhad E, Elektorowicz M

J Hazard Mater. 2018 Sep 15;358:475-483 Authors: Kariminezhad E, Elektorowicz M

Article GUID: 29655534

Effect of various electrokinetic treatment regimes on solids surface properties and thermal behavior of oil sediments.

Author(s): Kariminezhad E, Elektorowicz M

J Hazard Mater. 2018 Jul 05;353:227-235 Authors: Kariminezhad E, Elektorowicz M

Article GUID: 29674097

Assessment of Microbial Community Structure and Function in Serially Passaged Wastewater Electro-Bioreactor Sludge: An Approach to Enhance Sludge Settleability.

Author(s): ElNaker NA, Elektorowicz M, Naddeo V, Hasan SW, Yousef AF

Sci Rep. 2018 May 03;8(1):7013 Authors: ElNaker NA, Elektorowicz M, Naddeo V, Hasan SW, Yousef AF

Article GUID: 29725134

Effect of long-term electrodialytic soil remediation on Pb removal and soil weathering.

Author(s): Skibsted G, Ottosen LM, Elektorowicz M, Jensen PE

J Hazard Mater. 2018 Sep 15;358:459-466 Authors: Skibsted G, Ottosen LM, Elektorowicz M, Jensen PE

Article GUID: 29801718

Electrokinetically assisted oil-water phase separation in oily sludge with implementing novel controller system.

Author(s): Fellah Jahromi A, Elektorowicz M

J Hazard Mater. 2018 Sep 15;358:434-440 Authors: Fellah Jahromi A, Elektorowicz M

Article GUID: 30014933

Electrokinetic nondestructive in-situ technique for rehabilitation of liners damaged by fuels.

Author(s): Bani Baker M, Elektorowicz M, Hanna A

J Hazard Mater. 2018 Oct 05;359:510-515 Authors: Bani Baker M, Elektorowicz M, Hanna A

Article GUID: 30086521


Title:Extended environmental multimedia modeling system assessing the risk carried by pollutants in interacted air-unsaturated-groundwater zones.
Authors:Yuan JElektorowicz M
Link:https://www.ncbi.nlm.nih.gov/pubmed/31376662?dopt=Abstract
DOI:10.1016/j.jhazmat.2019.120852
Category:J Hazard Mater
PMID:31376662
Dept Affiliation: ENCS
1 Green Intelligence Environmental School, Yangtze Normal University, Chongqing, China; Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal, Quebec, H3G1M8, Canada. Electronic address: 20180014@yznu.cn.
2 Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal, Quebec, H3G1M8, Canada. Electronic address: mariae@encs.concordia.ca.

Description:

Extended environmental multimedia modeling system assessing the risk carried by pollutants in interacted air-unsaturated-groundwater zones.

J Hazard Mater. 2019 Jul 22;381:120852

Authors: Yuan J, Elektorowicz M

Abstract

Simulation of the transport of hazardous pollutants in a variety of media is a challenge. In this paper, a novel Extended Environment Multimedia Modeling and Analysis System (EEMMS) for migration of pollutants from landfill through unsaturated site to groundwater is presented. The developed EEMMS consists of four pathways modules: air, landfill, unsaturated zone and groundwater zone. The finite element method in EEMMS framework is used to analyze these four pathways and the results are compared to the finite difference model and analytical model. The effectiveness of EEMMS has been verified through a case study of Trail Road Landfill site. The simulation of uncertainty was conducted with a quantitative technique of Monte Carlo Method. The Risk Quotient (RQ) results show that the low-risk area covers 10,000 square meters, where the predicted concentrations of benzene are between 1 and 1.2?µg L-1. However, the high-risk area covers almost 200,000 square meters. Contrary to FEM, the majority of the FDM and analytical predictions were too high and fell outside the high boundary of the experimental result. The EEMMS is a unique risk assessment tool that can be used for impacts on water resource quality, biodiversity, fate of pollutants in ecosystem, climate change, etc.

PMID: 31376662 [PubMed - as supplied by publisher]