Keyword search (3,448 papers available)


Simulation and computer modeling of asphaltene in different solvents on oil-water interfaces using a molecular dynamic methodology.

Author(s): Yuan J, Elektorowicz M, Chen Z, Segun GA, Vakili M, Zhong L, Wang B, Zhu J, Wu Y

J Mol Graph Model. 2019 Sep 13;93:107450 Authors: Yuan J, Elektorowicz M, Chen Z, Segun GA, Vakili M, Zhong L, Wang B, Zhu J, Wu Y

Article GUID: 31542686

Extended environmental multimedia modeling system assessing the risk carried by pollutants in interacted air-unsaturated-groundwater zones.

Author(s): Yuan J, Elektorowicz M

J Hazard Mater. 2019 Jul 22;381:120852 Authors: Yuan J, Elektorowicz M

Article GUID: 31376662

Electro-demulsification of water-in-oil suspensions enhanced with implementing various additives.

Author(s): Taslimi Taleghani S, Fellah Jahromi A, Elektorowicz M

Chemosphere. 2019 May 20;233:157-163 Authors: Taslimi Taleghani S, Fellah Jahromi A, Elektorowicz M

Article GUID: 31173953

Comparison of constant, pulsed, incremental and decremental direct current applications on solid-liquid phase separation in oil sediments.

Author(s): Kariminezhad E, Elektorowicz M

J Hazard Mater. 2018 Sep 15;358:475-483 Authors: Kariminezhad E, Elektorowicz M

Article GUID: 29655534

Effect of various electrokinetic treatment regimes on solids surface properties and thermal behavior of oil sediments.

Author(s): Kariminezhad E, Elektorowicz M

J Hazard Mater. 2018 Jul 05;353:227-235 Authors: Kariminezhad E, Elektorowicz M

Article GUID: 29674097

Assessment of Microbial Community Structure and Function in Serially Passaged Wastewater Electro-Bioreactor Sludge: An Approach to Enhance Sludge Settleability.

Author(s): ElNaker NA, Elektorowicz M, Naddeo V, Hasan SW, Yousef AF

Sci Rep. 2018 May 03;8(1):7013 Authors: ElNaker NA, Elektorowicz M, Naddeo V, Hasan SW, Yousef AF

Article GUID: 29725134

Effect of long-term electrodialytic soil remediation on Pb removal and soil weathering.

Author(s): Skibsted G, Ottosen LM, Elektorowicz M, Jensen PE

J Hazard Mater. 2018 Sep 15;358:459-466 Authors: Skibsted G, Ottosen LM, Elektorowicz M, Jensen PE

Article GUID: 29801718

Electrokinetically assisted oil-water phase separation in oily sludge with implementing novel controller system.

Author(s): Fellah Jahromi A, Elektorowicz M

J Hazard Mater. 2018 Sep 15;358:434-440 Authors: Fellah Jahromi A, Elektorowicz M

Article GUID: 30014933

Electrokinetic nondestructive in-situ technique for rehabilitation of liners damaged by fuels.

Author(s): Bani Baker M, Elektorowicz M, Hanna A

J Hazard Mater. 2018 Oct 05;359:510-515 Authors: Bani Baker M, Elektorowicz M, Hanna A

Article GUID: 30086521


Title:Effect of various electrokinetic treatment regimes on solids surface properties and thermal behavior of oil sediments.
Authors:Kariminezhad EElektorowicz M
Link:https://www.ncbi.nlm.nih.gov/pubmed/29674097?dopt=Abstract
Category:J Hazard Mater
PMID:29674097
Dept Affiliation: ENCS
1 Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada. Electronic address: es_karim@encs.concordia.ca.
2 Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada.

Description:

Effect of various electrokinetic treatment regimes on solids surface properties and thermal behavior of oil sediments.

J Hazard Mater. 2018 Jul 05;353:227-235

Authors: Kariminezhad E, Elektorowicz M

Abstract

The electrokinetic process has shown its ability to separate the different material phases. However, not much is known about the effect of the electric fields on the surface properties of solids in the oil sediments and their behavior under different electrical regimes. In this study, the effect of four different types of electrical current on the surface properties of oil sediments was investigated, namely constant direct current (CDC), pulsed direct current (PDC), incremental direct current (IDC) and decremental direct current (DDC). X-ray photoelectron spectroscopy (XPS) analyses showed a decrease in the concentration of carbon from 99% in centrifuged samples to 63% on the surface of the solids in the PDC-treated oil sediment. Wettability alteration and contact angle studies showed an enhance in hydrophilicity of the solids following electrokinetic treatment. A significant change in carbon and oxygen-containing functionalities at the surface solids of the DDC-treated sediment was also observed. Thermogravimetric analyses (TGA) confirmed the ability of electrokinetic treatment in separating the phases by shifting the thermogram profiles towards lower temperatures. The findings showed that the electrokinetic process exerts its effect by altering the surface properties of the sediment solids and destabilizing water-in-oil emulsions to facilitate phase separation of this complex waste.

PMID: 29674097 [PubMed - in process]