Keyword search (3,168 papers available)


BOLD signal physiology: Models and applications.

Author(s): Gauthier CJ, Fan AP

Neuroimage. 2019 02 15;187:116-127 Authors: Gauthier CJ, Fan AP

Article GUID: 29544818

High resolution atlas of the venous brain vasculature from 7 T quantitative susceptibility maps.

Author(s): Huck J, Wanner Y, Fan AP, Jäger AT, Grahl S, Schneider U, Villringer A, Steele CJ, Tardif CL, Bazin PL, Gauthier CJ

Brain Struct Funct. 2019 Jul 05;: Authors: Huck J, Wanner Y, Fan AP, Jäger AT, Grahl S, Schneider U, Villringer A, Steele CJ, Tardif CL, Bazin PL, Gauthier CJ

Article GUID: 31278570

Higher cardiovascular fitness level is associated with lower cerebrovascular reactivity and perfusion in healthy older adults.

Author(s): Intzandt B, Sabra D, Foster C, Desjardins-Crépeau L, Hoge RD, Steele CJ, Bherer L, Gauthier CJ

J Cereb Blood Flow Metab. 2019 Jul 25;:271678X19862873 Authors: Intzandt B, Sabra D, Foster C, Desjardins-Crépeau L, Hoge RD, Steele CJ, Bherer L, Gauthier CJ

Article GUID: 31342831

Advanced MRI techniques to improve our understanding of experience-induced neuroplasticity.

Author(s): Tardif CL, Gauthier CJ, Steele CJ, Bazin PL, Schäfer A, Schaefer A, Turner R, Villringer A

Neuroimage. 2016 05 01;131:55-72 Authors: Tardif CL, Gauthier CJ, Steele CJ, Bazin PL, Schäfer A, Schaefer A, Turner R, Villringer A

Article GUID: 26318050

Elevated brain oxygen extraction fraction measured by MRI susceptibility relates to perfusion status in acute ischemic stroke.

Author(s): Fan AP, Khalil AA, Fiebach JB, Zaharchuk G, Villringer A, Villringer K, Gauthier CJ

J Cereb Blood Flow Metab. 2019 Feb 07;:271678X19827944 Authors: Fan AP, Khalil AA, Fiebach JB, Zaharchuk G, Villringer A, Villringer K, Gauthier CJ

Article GUID: 30732551

Arterial stiffness and brain integrity: A review of MRI findings.

Author(s): Badji A, Sabra D, Bherer L, Cohen-Adad J, Girouard H, Gauthier CJ

Ageing Res Rev. 2019 May 04;53:100907 Authors: Badji A, Sabra D, Bherer L, Cohen-Adad J, Girouard H, Gauthier CJ

Article GUID: 31063866

Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women.

Author(s): Dupuy O, Gauthier CJ, Fraser SA, Desjardins-Crèpeau L, Desjardins M, Mekary S, Lesage F, Hoge RD, Pouliot P, Bherer L

Front Hum Neurosci. 2015;9:66 Authors: Dupuy O, Gauthier CJ, Fraser SA, Desjardins-Crèpeau L, Desjardins M, Mekary S, Lesage F, Hoge RD, Pouliot P, Bherer L

Article GUID: 25741267

Investigation of the confounding effects of vasculature and metabolism on computational anatomy studies.

Author(s): Tardif CL, Steele CJ, Lampe L, Bazin PL, Ragert P, Villringer A, Gauthier CJ

Neuroimage. 2017 04 01;149:233-243 Authors: Tardif CL, Steele CJ, Lampe L, Bazin PL, Ragert P, Villringer A, Gauthier CJ

Article GUID: 28159689

Age differences in brain signal variability are robust to multiple vascular controls.

Author(s): Garrett DD, Lindenberger U, Hoge RD, Gauthier CJ

Sci Rep. 2017 08 31;7(1):10149 Authors: Garrett DD, Lindenberger U, Hoge RD, Gauthier CJ

Article GUID: 28860455


Title:Investigation of the confounding effects of vasculature and metabolism on computational anatomy studies.
Authors:Tardif CLSteele CJLampe LBazin PLRagert PVillringer AGauthier CJ
Link:https://www.ncbi.nlm.nih.gov/pubmed/28159689?dopt=Abstract
Category:Neuroimage
PMID:28159689
Dept Affiliation: PERFORM
1 Douglas Mental Health University Institute, McGill University, Montreal, Canada.
2 Douglas Mental Health University Institute, McGill University, Montreal, Canada; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
3 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
4 University of Leipzig, Department of Sport Science, Leipzig, Germany.
5 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Cognitive Neurology, University Hospital, Leipzig, Germany; Mind & Brain Institute, Berlin School of Mind and Brain, Charité and Humboldt-University, Berlin, Germany.
6 Concordia University, Department of Physics, PERFORM Centre, Montreal, Canada. Electronic address: claudine.gauthier@concordia.ca.

Description:

Investigation of the confounding effects of vasculature and metabolism on computational anatomy studies.

Neuroimage. 2017 04 01;149:233-243

Authors: Tardif CL, Steele CJ, Lampe L, Bazin PL, Ragert P, Villringer A, Gauthier CJ

Abstract

Computational anatomy studies typically use T1-weighted magnetic resonance imaging contrast to look at local differences in cortical thickness or grey matter volume across time or subjects. This type of analysis is a powerful and non-invasive tool to probe anatomical changes associated with neurodevelopment, aging, disease or experience-induced plasticity. However, these comparisons could suffer from biases arising from vascular and metabolic subject- or time-dependent differences. Differences in blood flow and volume could be caused by vasodilation or differences in vascular density, and result in a larger signal contribution of the blood compartment within grey matter voxels. Metabolic changes could lead to differences in dissolved oxygen in brain tissue, leading to T1 shortening. Here, we analyze T1 maps and T1-weighted images acquired during different breathing conditions (ambient air, hypercapnia (increased CO2) and hyperoxia (increased O2)) to evaluate the effect size that can be expected from changes in blood flow, volume and dissolved O2 concentration in computational anatomy studies. Results show that increased blood volume from vasodilation during hypercapnia is associated with an overestimation of cortical thickness (1.85%) and grey matter volume (3.32%), and that both changes in O2 concentration and blood volume lead to changes in the T1 value of tissue. These results should be taken into consideration when interpreting existing morphometry studies and in future study design. Furthermore, this study highlights the overlap in structural and physiological MRI, which are conventionally interpreted as two independent modalities.

PMID: 28159689 [PubMed - indexed for MEDLINE]