Keyword search (3,619 papers available)


Large-scale mGluR5 network abnormalities linked to epilepsy duration in focal cortical dysplasia.

Author(s): DuBois JM, Mathotaarachchi S, Rousset OG, Sziklas V, Sepulcre J, Guiot MC, Hall JA, Massarweh G, Soucy JP, Rosa-Neto P, Kobayashi E...

To determine the extent of metabotropic glutamate receptor type 5 (mGluR5) network abnormalities associated with focal cortical dysplasia (FCD), we performed graph theoretical analysis of [11C]ABP6...

Article GUID: 33401137

Localization Accuracy of Distributed Inverse Solutions for Electric and Magnetic Source Imaging of Interictal Epileptic Discharges in Patients with Focal Epilepsy.

Author(s): Heers M, Chowdhury RA, Hedrich T, Dubeau F, Hall JA, Lina JM, Grova C, Kobayashi E

Brain Topogr. 2016 Jan;29(1):162-81 Authors: Heers M, Chowdhury RA, Hedrich T, Dubeau F, Hall JA, Lina JM, Grova C, Kobayashi E

Article GUID: 25609211

Intracranial EEG potentials estimated from MEG sources: A new approach to correlate MEG and iEEG data in epilepsy.

Author(s): Grova C, Aiguabella M, Zelmann R, Lina JM, Hall JA, Kobayashi E

Hum Brain Mapp. 2016 May;37(5):1661-83 Authors: Grova C, Aiguabella M, Zelmann R, Lina JM, Hall JA, Kobayashi E

Article GUID: 26931511

Source localization of the seizure onset zone from ictal EEG/MEG data.

Author(s): Pellegrino G, Hedrich T, Chowdhury R, Hall JA, Lina JM, Dubeau F, Kobayashi E, Grova C

Hum Brain Mapp. 2016 07;37(7):2528-46 Authors: Pellegrino G, Hedrich T, Chowdhury R, Hall JA, Lina JM, Dubeau F, Kobayashi E, Grova C

Article GUID: 27059157

Clinical yield of magnetoencephalography distributed source imaging in epilepsy: A comparison with equivalent current dipole method.

Author(s): Pellegrino G, Hedrich T, Chowdhury RA, Hall JA, Dubeau F, Lina JM, Kobayashi E, Grova C

Hum Brain Mapp. 2018 01;39(1):218-231 Authors: Pellegrino G, Hedrich T, Chowdhury RA, Hall JA, Dubeau F, Lina JM, Kobayashi E, Grova C

Article GUID: 29024165

Metabotropic Glutamate Receptor Type 5 (mGluR5) Cortical Abnormalities in Focal Cortical Dysplasia Identified In Vivo With [11C]ABP688 Positron-Emission Tomography (PET) Imaging.

Author(s): DuBois JM, Rousset OG, Guiot MC, Hall JA, Reader AJ, Soucy JP, Rosa-Neto P, Kobayashi E

Cereb Cortex. 2016 10 17;26(11):4170-4179 Authors: DuBois JM, Rousset OG, Guiot MC, Hall JA, Reader AJ, Soucy JP, Rosa-Neto P, Kobayashi E

Article GUID: 27578494

Combining intraoperative ultrasound brain shift correction and augmented reality visualizations: a pilot study of eight cases.

Author(s): Gerard IJ, Kersten-Oertel M, Drouin S, Hall JA, Petrecca K, De Nigris D, Di Giovanni DA, Arbel T, Collins DL

J Med Imaging (Bellingham). 2018 Apr;5(2):021210 Authors: Gerard IJ, Kersten-Oertel M, Drouin S, Hall JA, Petrecca K, De Nigris D, Di Giovanni DA, Arbel T, Collins DL

Article GUID: 29392162


Title:Combining intraoperative ultrasound brain shift correction and augmented reality visualizations: a pilot study of eight cases.
Authors:Gerard IJKersten-Oertel MDrouin SHall JAPetrecca KDe Nigris DDi Giovanni DAArbel TCollins DL
Link:https://www.ncbi.nlm.nih.gov/pubmed/29392162?dopt=Abstract
DOI:10.1117/1.JMI.5.2.021210
Category:J Med Imaging (Bellingham)
PMID:29392162
Dept Affiliation: PERFORM
1 McGill University, Montreal Neurological Institute and Hospital, Department of Biomedical Engineering, Montreal, Québec, Canada.
2 Concordia University, PERFORM Centre, Department of Computer Science and Software Engineering, Montreal, Québec, Canada.
3 McGill University, Montreal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, Montreal, Québec, Canada.
4 McGill University, Centre for Intelligent Machines, Department of Electrical and Computer Engineering, Montreal, Québec, Canada.

Description:

Combining intraoperative ultrasound brain shift correction and augmented reality visualizations: a pilot study of eight cases.

J Med Imaging (Bellingham). 2018 Apr;5(2):021210

Authors: Gerard IJ, Kersten-Oertel M, Drouin S, Hall JA, Petrecca K, De Nigris D, Di Giovanni DA, Arbel T, Collins DL

Abstract

We present our work investigating the feasibility of combining intraoperative ultrasound for brain shift correction and augmented reality (AR) visualization for intraoperative interpretation of patient-specific models in image-guided neurosurgery (IGNS) of brain tumors. We combine two imaging technologies for image-guided brain tumor neurosurgery. Throughout surgical interventions, AR was used to assess different surgical strategies using three-dimensional (3-D) patient-specific models of the patient's cortex, vasculature, and lesion. Ultrasound imaging was acquired intraoperatively, and preoperative images and models were registered to the intraoperative data. The quality and reliability of the AR views were evaluated with both qualitative and quantitative metrics. A pilot study of eight patients demonstrates the feasible combination of these two technologies and their complementary features. In each case, the AR visualizations enabled the surgeon to accurately visualize the anatomy and pathology of interest for an extended period of the intervention. Inaccuracies associated with misregistration, brain shift, and AR were improved in all cases. These results demonstrate the potential of combining ultrasound-based registration with AR to become a useful tool for neurosurgeons to improve intraoperative patient-specific planning by improving the understanding of complex 3-D medical imaging data and prolonging the reliable use of IGNS.

PMID: 29392162 [PubMed]