Keyword search (3,619 papers available)


Large-scale mGluR5 network abnormalities linked to epilepsy duration in focal cortical dysplasia.

Author(s): DuBois JM, Mathotaarachchi S, Rousset OG, Sziklas V, Sepulcre J, Guiot MC, Hall JA, Massarweh G, Soucy JP, Rosa-Neto P, Kobayashi E...

To determine the extent of metabotropic glutamate receptor type 5 (mGluR5) network abnormalities associated with focal cortical dysplasia (FCD), we performed graph theoretical analysis of [11C]ABP6...

Article GUID: 33401137

Localization Accuracy of Distributed Inverse Solutions for Electric and Magnetic Source Imaging of Interictal Epileptic Discharges in Patients with Focal Epilepsy.

Author(s): Heers M, Chowdhury RA, Hedrich T, Dubeau F, Hall JA, Lina JM, Grova C, Kobayashi E

Brain Topogr. 2016 Jan;29(1):162-81 Authors: Heers M, Chowdhury RA, Hedrich T, Dubeau F, Hall JA, Lina JM, Grova C, Kobayashi E

Article GUID: 25609211

Intracranial EEG potentials estimated from MEG sources: A new approach to correlate MEG and iEEG data in epilepsy.

Author(s): Grova C, Aiguabella M, Zelmann R, Lina JM, Hall JA, Kobayashi E

Hum Brain Mapp. 2016 May;37(5):1661-83 Authors: Grova C, Aiguabella M, Zelmann R, Lina JM, Hall JA, Kobayashi E

Article GUID: 26931511

Source localization of the seizure onset zone from ictal EEG/MEG data.

Author(s): Pellegrino G, Hedrich T, Chowdhury R, Hall JA, Lina JM, Dubeau F, Kobayashi E, Grova C

Hum Brain Mapp. 2016 07;37(7):2528-46 Authors: Pellegrino G, Hedrich T, Chowdhury R, Hall JA, Lina JM, Dubeau F, Kobayashi E, Grova C

Article GUID: 27059157

Clinical yield of magnetoencephalography distributed source imaging in epilepsy: A comparison with equivalent current dipole method.

Author(s): Pellegrino G, Hedrich T, Chowdhury RA, Hall JA, Dubeau F, Lina JM, Kobayashi E, Grova C

Hum Brain Mapp. 2018 01;39(1):218-231 Authors: Pellegrino G, Hedrich T, Chowdhury RA, Hall JA, Dubeau F, Lina JM, Kobayashi E, Grova C

Article GUID: 29024165

Metabotropic Glutamate Receptor Type 5 (mGluR5) Cortical Abnormalities in Focal Cortical Dysplasia Identified In Vivo With [11C]ABP688 Positron-Emission Tomography (PET) Imaging.

Author(s): DuBois JM, Rousset OG, Guiot MC, Hall JA, Reader AJ, Soucy JP, Rosa-Neto P, Kobayashi E

Cereb Cortex. 2016 10 17;26(11):4170-4179 Authors: DuBois JM, Rousset OG, Guiot MC, Hall JA, Reader AJ, Soucy JP, Rosa-Neto P, Kobayashi E

Article GUID: 27578494

Combining intraoperative ultrasound brain shift correction and augmented reality visualizations: a pilot study of eight cases.

Author(s): Gerard IJ, Kersten-Oertel M, Drouin S, Hall JA, Petrecca K, De Nigris D, Di Giovanni DA, Arbel T, Collins DL

J Med Imaging (Bellingham). 2018 Apr;5(2):021210 Authors: Gerard IJ, Kersten-Oertel M, Drouin S, Hall JA, Petrecca K, De Nigris D, Di Giovanni DA, Arbel T, Collins DL

Article GUID: 29392162


Title:Clinical yield of magnetoencephalography distributed source imaging in epilepsy: A comparison with equivalent current dipole method.
Authors:Pellegrino GHedrich TChowdhury RAHall JADubeau FLina JMKobayashi EGrova C
Link:https://www.ncbi.nlm.nih.gov/pubmed/29024165?dopt=Abstract
DOI:10.1002/hbm.23837
Category:Hum Brain Mapp
PMID:29024165
Dept Affiliation: PERFORM
1 Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Quebec, Canada.
2 Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
3 IRCCS Fondazione San Camillo Hospital, Venice, Italy.
4 Departement de Génie Electrique, Ecole de Technologie Supérieure, Montreal, Quebec, Canada.
5 Centre De Recherches En Mathématiques, Montreal, Quebec, Canada.
6 Centre D'études Avancées En Médecine Du Sommeil, Centre De Recherche De L'hôpital Sacré-Coeur De Montréal, Montreal, Quebec, Canada.
7 Physics Department and PERFORM Centre, Concordia University, Montreal, Quebec, Canada.

Description:

Clinical yield of magnetoencephalography distributed source imaging in epilepsy: A comparison with equivalent current dipole method.

Hum Brain Mapp. 2018 01;39(1):218-231

Authors: Pellegrino G, Hedrich T, Chowdhury RA, Hall JA, Dubeau F, Lina JM, Kobayashi E, Grova C

Abstract

OBJECTIVE: Source localization of interictal epileptic discharges (IEDs) is clinically useful in the presurgical workup of epilepsy patients. It is usually obtained by equivalent current dipole (ECD) which localizes a point source and is the only inverse solution approved by clinical guidelines. In contrast, magnetic source imaging using distributed methods (dMSI) provides maps of the location and the extent of the generators, but its yield has not been clinically validated. We systematically compared ECD versus dMSI performed using coherent Maximum Entropy on the Mean (cMEM), a method sensitive to the spatial extent of the generators.

METHODS: 340 source localizations of IEDs derived from 49 focal epilepsy patients with foci well-defined through intracranial EEG, MRI lesions, and surgery were analyzed. The comparison was based on the assessment of the sublobar concordance with the focus and of the distance between the source and the focus.

RESULTS: dMSI sublobar concordance was significantly higher than ECD (81% vs 69%, P?<?0.001), especially for extratemporal lobe sources (dMSI?=?84%; ECD?=?67%, P?<?0.001) and for seizure free patients (dMSI?=?83%; ECD?=?70%, P?<?0.001). The median distance from the focus was 4.88 mm for ECD and 3.44 mm for dMSI (P?<?0.001). ECD dipoles were often wrongly localized in deep brain regions.

CONCLUSIONS: dMSI using cMEM exhibited better accuracy. dMSI also offered the advantage of recovering more realistic maps of the generator, which could be exploited for neuronavigation aimed at targeting invasive EEG and surgical resection. Therefore, dMSI may be preferred to ECD in clinical practice. Hum Brain Mapp 39:218-231, 2018. © 2017 Wiley Periodicals, Inc.

PMID: 29024165 [PubMed - indexed for MEDLINE]