Keyword search (3,448 papers available)


The sensation of groove engages motor and reward networks.

Author(s): Matthews TE, Witek MAG, Lund T, Vuust P, Penhune VB

Neuroimage. 2020 Mar 23;:116768 Authors: Matthews TE, Witek MAG, Lund T, Vuust P, Penhune VB

Article GUID: 32217163

Music predictability and liking enhance pupil dilation and promote motor learning in non-musicians.

Author(s): Bianco R, Gold BP, Johnson AP, Penhune VB

Sci Rep. 2019 Nov 19;9(1):17060 Authors: Bianco R, Gold BP, Johnson AP, Penhune VB

Article GUID: 31745159

The descending motor tracts are different in dancers and musicians.

Author(s): Giacosa C, Karpati FJ, Foster NEV, Hyde KL, Penhune VB

Brain Struct Funct. 2019 Oct 16;: Authors: Giacosa C, Karpati FJ, Foster NEV, Hyde KL, Penhune VB

Article GUID: 31620887

Dance and music share gray matter structural correlates.

Author(s): Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL

Brain Res. 2017 02 15;1657:62-73 Authors: Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL

Article GUID: 27923638

Efficacy of Auditory versus Motor Learning for Skilled and Novice Performers.

Author(s): Brown RM, Penhune VB

J Cogn Neurosci. 2018 11;30(11):1657-1682 Authors: Brown RM, Penhune VB

Article GUID: 30156505

The role of musical training in emergent and event-based timing.

Author(s): Baer LH, Thibodeau JL, Gralnick TM, Li KZ, Penhune VB

Front Hum Neurosci. 2013;7:191 Authors: Baer LH, Thibodeau JL, Gralnick TM, Li KZ, Penhune VB

Article GUID: 23717275

Effects of age and cognitive load on response reprogramming.

Author(s): Korotkevich Y, Trewartha KM, Penhune VB, Li KZ

Exp Brain Res. 2015 Mar;233(3):937-46 Authors: Korotkevich Y, Trewartha KM, Penhune VB, Li KZ

Article GUID: 25511168

Regional cerebellar volumes are related to early musical training and finger tapping performance.

Author(s): Baer LH, Park MT, Bailey JA, Chakravarty MM, Li KZ, Penhune VB

Neuroimage. 2015 Apr 01;109:130-9 Authors: Baer LH, Park MT, Bailey JA, Chakravarty MM, Li KZ, Penhune VB

Article GUID: 25583606

Rhythm and time in the premotor cortex.

Author(s): Penhune VB, Zatorre RJ

PLoS Biol. 2019 Jun 03;17(6):e3000293 Authors: Penhune VB, Zatorre RJ

Article GUID: 31158227

Structural Covariance Analysis Reveals Differences Between Dancers and Untrained Controls.

Author(s): Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL

Front Hum Neurosci. 2018;12:373 Authors: Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL

Article GUID: 30319377


Title:Efficacy of Auditory versus Motor Learning for Skilled and Novice Performers.
Authors:Brown RMPenhune VB
Link:https://www.ncbi.nlm.nih.gov/pubmed/30156505?dopt=Abstract
DOI:10.1162/jocn_a_01309
Category:J Cogn Neurosci
PMID:30156505
Dept Affiliation: IMAGING
1 Concordia University, Montreal, Canada.

Description:

Efficacy of Auditory versus Motor Learning for Skilled and Novice Performers.

J Cogn Neurosci. 2018 11;30(11):1657-1682

Authors: Brown RM, Penhune VB

Abstract

Humans must learn a variety of sensorimotor skills, yet the relative contributions of sensory and motor information to skill acquisition remain unclear. Here we compare the behavioral and neural contributions of perceptual learning to that of motor learning, and we test whether these contributions depend on the expertise of the learner. Pianists and nonmusicians learned to perform novel melodies on a piano during fMRI scanning in four learning conditions: listening (auditory learning), performing without auditory feedback (motor learning), performing with auditory feedback (auditory-motor learning), or observing visual cues without performing or listening (cue-only learning). Visual cues were present in every learning condition and consisted of musical notation for pianists and spatial cues for nonmusicians. Melodies were performed from memory with no visual cues and with auditory feedback (recall) five times during learning. Pianists showed greater improvements in pitch and rhythm accuracy at recall during auditory learning compared with motor learning. Nonmusicians demonstrated greater rhythm improvements at recall during auditory learning compared with all other learning conditions. Pianists showed greater primary motor response at recall during auditory learning compared with motor learning, and response in this region during auditory learning correlated with pitch accuracy at recall and with auditory-premotor network response during auditory learning. Nonmusicians showed greater inferior parietal response during auditory compared with auditory-motor learning, and response in this region correlated with pitch accuracy at recall. Results suggest an advantage for perceptual learning compared with motor learning that is both general and expertise-dependent. This advantage is hypothesized to depend on feedforward motor control systems that can be used during learning to transform sensory information into motor production.

PMID: 30156505 [PubMed - in process]