Keyword search (3,448 papers available)


The sensation of groove engages motor and reward networks.

Author(s): Matthews TE, Witek MAG, Lund T, Vuust P, Penhune VB

Neuroimage. 2020 Mar 23;:116768 Authors: Matthews TE, Witek MAG, Lund T, Vuust P, Penhune VB

Article GUID: 32217163

Music predictability and liking enhance pupil dilation and promote motor learning in non-musicians.

Author(s): Bianco R, Gold BP, Johnson AP, Penhune VB

Sci Rep. 2019 Nov 19;9(1):17060 Authors: Bianco R, Gold BP, Johnson AP, Penhune VB

Article GUID: 31745159

The descending motor tracts are different in dancers and musicians.

Author(s): Giacosa C, Karpati FJ, Foster NEV, Hyde KL, Penhune VB

Brain Struct Funct. 2019 Oct 16;: Authors: Giacosa C, Karpati FJ, Foster NEV, Hyde KL, Penhune VB

Article GUID: 31620887

Dance and music share gray matter structural correlates.

Author(s): Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL

Brain Res. 2017 02 15;1657:62-73 Authors: Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL

Article GUID: 27923638

Efficacy of Auditory versus Motor Learning for Skilled and Novice Performers.

Author(s): Brown RM, Penhune VB

J Cogn Neurosci. 2018 11;30(11):1657-1682 Authors: Brown RM, Penhune VB

Article GUID: 30156505

The role of musical training in emergent and event-based timing.

Author(s): Baer LH, Thibodeau JL, Gralnick TM, Li KZ, Penhune VB

Front Hum Neurosci. 2013;7:191 Authors: Baer LH, Thibodeau JL, Gralnick TM, Li KZ, Penhune VB

Article GUID: 23717275

Effects of age and cognitive load on response reprogramming.

Author(s): Korotkevich Y, Trewartha KM, Penhune VB, Li KZ

Exp Brain Res. 2015 Mar;233(3):937-46 Authors: Korotkevich Y, Trewartha KM, Penhune VB, Li KZ

Article GUID: 25511168

Regional cerebellar volumes are related to early musical training and finger tapping performance.

Author(s): Baer LH, Park MT, Bailey JA, Chakravarty MM, Li KZ, Penhune VB

Neuroimage. 2015 Apr 01;109:130-9 Authors: Baer LH, Park MT, Bailey JA, Chakravarty MM, Li KZ, Penhune VB

Article GUID: 25583606

Rhythm and time in the premotor cortex.

Author(s): Penhune VB, Zatorre RJ

PLoS Biol. 2019 Jun 03;17(6):e3000293 Authors: Penhune VB, Zatorre RJ

Article GUID: 31158227

Structural Covariance Analysis Reveals Differences Between Dancers and Untrained Controls.

Author(s): Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL

Front Hum Neurosci. 2018;12:373 Authors: Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL

Article GUID: 30319377


Title:Effects of age and cognitive load on response reprogramming.
Authors:Korotkevich YTrewartha KMPenhune VBLi KZ
Link:https://www.ncbi.nlm.nih.gov/pubmed/25511168?dopt=Abstract
Category:Exp Brain Res
PMID:25511168
Dept Affiliation: CRDH
1 Department of Psychology, Centre for Research in Human Development, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada, koroyana@hotmail.com.

Description:

Effects of age and cognitive load on response reprogramming.

Exp Brain Res. 2015 Mar;233(3):937-46

Authors: Korotkevich Y, Trewartha KM, Penhune VB, Li KZ

Abstract

A dual-task paradigm was used to examine the effect of cognitive load on motor reprogramming. We propose that in the face of conflict, both executive control and motor control mechanisms become more interconnected in the process of reprogramming motor behaviors. If so, one would expect a concurrent cognitive load to compromise younger adults' (YAs) motor reprogramming ability and further exacerbate the response reprogramming ability of older adults (OAs). Nineteen YAs and 14 OAs overlearned a sequence of key presses. Deviations of the practiced sequence were introduced to assess motor reprogramming ability. A Serial Sevens Test was used as the cognitive load. A 3D motion capture system was used to parse finger movements into planning and motor execution times. Global response time analysis revealed that under single-task conditions, during prepotent transitions, OAs responded as quickly as YAs, but they were disproportionately worse than YAs during conflict transitions. Under dual-task conditions, YAs performance became more similar to that of OAs. Movement data were decomposed into planning and movement time, revealing that under single-task conditions, when responding to conflicting stimuli YAs reduced their movement time in order to compensate for delayed planning time; however, additional cognitive load prevented them from exhibiting this compensatory hastening on conflict transitions. We propose that age-related declines in response reprogramming may be linked to reduced cognitive capacity. Current findings suggest that cognitive capacity, reduced in the case of OAs or YAs under divided attention conditions, influences the ability to flexibly adapt to conflicting conditions.

PMID: 25511168 [PubMed - indexed for MEDLINE]