Keyword search (3,448 papers available)


The sensation of groove engages motor and reward networks.

Author(s): Matthews TE, Witek MAG, Lund T, Vuust P, Penhune VB

Neuroimage. 2020 Mar 23;:116768 Authors: Matthews TE, Witek MAG, Lund T, Vuust P, Penhune VB

Article GUID: 32217163

Music predictability and liking enhance pupil dilation and promote motor learning in non-musicians.

Author(s): Bianco R, Gold BP, Johnson AP, Penhune VB

Sci Rep. 2019 Nov 19;9(1):17060 Authors: Bianco R, Gold BP, Johnson AP, Penhune VB

Article GUID: 31745159

The descending motor tracts are different in dancers and musicians.

Author(s): Giacosa C, Karpati FJ, Foster NEV, Hyde KL, Penhune VB

Brain Struct Funct. 2019 Oct 16;: Authors: Giacosa C, Karpati FJ, Foster NEV, Hyde KL, Penhune VB

Article GUID: 31620887

Dance and music share gray matter structural correlates.

Author(s): Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL

Brain Res. 2017 02 15;1657:62-73 Authors: Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL

Article GUID: 27923638

Efficacy of Auditory versus Motor Learning for Skilled and Novice Performers.

Author(s): Brown RM, Penhune VB

J Cogn Neurosci. 2018 11;30(11):1657-1682 Authors: Brown RM, Penhune VB

Article GUID: 30156505

The role of musical training in emergent and event-based timing.

Author(s): Baer LH, Thibodeau JL, Gralnick TM, Li KZ, Penhune VB

Front Hum Neurosci. 2013;7:191 Authors: Baer LH, Thibodeau JL, Gralnick TM, Li KZ, Penhune VB

Article GUID: 23717275

Effects of age and cognitive load on response reprogramming.

Author(s): Korotkevich Y, Trewartha KM, Penhune VB, Li KZ

Exp Brain Res. 2015 Mar;233(3):937-46 Authors: Korotkevich Y, Trewartha KM, Penhune VB, Li KZ

Article GUID: 25511168

Regional cerebellar volumes are related to early musical training and finger tapping performance.

Author(s): Baer LH, Park MT, Bailey JA, Chakravarty MM, Li KZ, Penhune VB

Neuroimage. 2015 Apr 01;109:130-9 Authors: Baer LH, Park MT, Bailey JA, Chakravarty MM, Li KZ, Penhune VB

Article GUID: 25583606

Rhythm and time in the premotor cortex.

Author(s): Penhune VB, Zatorre RJ

PLoS Biol. 2019 Jun 03;17(6):e3000293 Authors: Penhune VB, Zatorre RJ

Article GUID: 31158227

Structural Covariance Analysis Reveals Differences Between Dancers and Untrained Controls.

Author(s): Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL

Front Hum Neurosci. 2018;12:373 Authors: Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL

Article GUID: 30319377


Title:Dance and music share gray matter structural correlates.
Authors:Karpati FJGiacosa CFoster NEVPenhune VBHyde KL
Link:https://www.ncbi.nlm.nih.gov/pubmed/27923638?dopt=Abstract
DOI:10.1016/j.brainres.2016.11.029
Category:Brain Res
PMID:27923638
Dept Affiliation: IMAGING
1 International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128, Succ. Centre Ville, Montréal, QC H3C 3J7, Canada; Faculty of Medicine, McGill University, 3605 Rue de la Montagne, Montreal, QC H3G 2M1, Canada. Electronic address: falisha.karpati@mail.mcgill.ca.
2 International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128, Succ. Centre Ville, Montréal, QC H3C 3J7, Canada; Dept. of Psychology, Concordia University, 7141 Sherbrooke West, PY-146, Montreal, QC H4B 1R6, Canada. Electronic address: chiagiarasa@gmail.com.
3 International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128, Succ. Centre Ville, Montréal, QC H3C 3J7, Canada; Dept. of Psychology, University of Montreal, Pavillon Marie-Victorin, 90 Avenue Vincent d'Indy, Montreal, QC H2V 2S9, Canada. Electronic address: nicholas.foster@mail.mcgill.ca.
4 International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128, Succ. Centre Ville, Montréal, QC H3C 3J7, Canada; Dept. of Psychology, Concordia University, 7141 Sherbrooke West, PY-146, Montreal, QC H4B 1R6, Canada. Electronic address: virginia.penhune@concordia.ca.
5 International Laboratory for Brain, Music and Sound Research (BRAMS), Pavillon 1420 Mont Royal, FAS, Département de psychologie, CP 6128, Succ. Centre Ville, Montréal, QC H3C 3J7, Canada; Faculty of Medicine, McGill University, 3605 Rue de la Montagne, Montreal, QC H3G 2M1, Canada; Dept. of Psychology, University of Montreal, Pavillon Marie-Victorin, 90 Avenue Vincent d'Indy, Montreal, QC H2V 2S9, Canada. Electronic address: krista.hyde@umontreal.ca.

Description:

Dance and music share gray matter structural correlates.

Brain Res. 2017 02 15;1657:62-73

Authors: Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL

Abstract

Intensive practise of sensorimotor skills, such as music and dance, is associated with brain structural plasticity. While the neural correlates of music have been well-investigated, less is known about the neural correlates of dance. Additionally, the gray matter structural correlates of dance versus music training have not yet been directly compared. The objectives of the present study were to compare gray matter structure as measured by surface- and voxel-based morphometry between expert dancers, expert musicians and untrained controls, as well as to correlate gray matter structure with performance on dance- and music-related tasks. Dancers and musicians were found to have increased cortical thickness compared to controls in superior temporal regions. Gray matter structure in the superior temporal gyrus was also correlated with performance on dance imitation, rhythm synchronization and melody discrimination tasks. These results suggest that superior temporal regions are important in both dance- and music-related skills and may be affected similarly by both types of long-term intensive training. This work advances knowledge of the neural correlates of dance and music, as well as training-associated brain plasticity in general.

PMID: 27923638 [PubMed - indexed for MEDLINE]