Keyword search (3,448 papers available)


Four Aromatic Intradiol Ring Cleavage Dioxygenases from Aspergillus niger.

Author(s): Semana P, Powlowski J

Ring cleavage dioxygenases catalyze the critical ring-opening step in the catabolism of aromatic compounds. The archetypal filamentous fungus Aspergillus niger previously has been reported to be able to utilize a range of monocyclic aromatic compounds as so...

Article GUID: 31540981

Characterization of active and inactive forms of the phenol hydroxylase stimulatory protein DmpM.

Author(s): Cadieux E, Powlowski J

Biochemistry. 1999 Aug 17;38(33):10714-22 Authors: Cadieux E, Powlowski J

Article GUID: 10451366

Biochemical and molecular characterization of a cellobiohydrolase from Trametes versicolor.

Author(s): Lahjouji K, Storms R, Xiao Z, Joung KB, Zheng Y, Powlowski J, Tsang A, Varin L

Appl Microbiol Biotechnol. 2007 May;75(2):337-46 Authors: Lahjouji K, Storms R, Xiao Z, Joung KB, Zheng Y, Powlowski J, Tsang A, Varin L

Article GUID: 17333176

A shared binding site for NAD+ and coenzyme A in an acetaldehyde dehydrogenase involved in bacterial degradation of aromatic compounds.

Author(s): Lei Y, Pawelek PD, Powlowski J

Biochemistry. 2008 Jul 01;47(26):6870-82 Authors: Lei Y, Pawelek PD, Powlowski J

Article GUID: 18537268

Analytical and computational approaches to define the Aspergillus niger secretome.

Author(s): Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE

Fungal Genet Biol. 2009 Mar;46 Suppl 1:S153-S160 Authors: Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE

Article GUID: 19618504

A molecular phylogeny of thermophilic fungi.

Author(s): Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan MC, Quenneville G, Tsang A

Fungal Biol. 2012 Apr;116(4):489-502 Authors: Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan MC, Quenneville G, Tsang A

Article GUID: 22483047

Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila.

Author(s): Kolbusz MA, Di Falco M, Ishmael N, Marqueteau S, Moisan MC, Baptista CDS, Powlowski J, Tsang A

Fungal Genet Biol. 2014 Nov;72:10-20 Authors: Kolbusz MA, Di Falco M, Ishmael N, Marqueteau S, Moisan MC, Baptista CDS, Powlowski J, Tsang A

Article GUID: 24881579

mycoCLAP, the database for characterized lignocellulose-active proteins of fungal origin: resource and text mining curation support.

Author(s): Strasser K, McDonnell E, Nyaga C, Wu M, Wu S, Almeida H, Meurs MJ, Kosseim L, Powlowski J, Butler G, Tsang A

Database (Oxford). 2015;2015: Authors: Strasser K, McDonnell E, Nyaga C, Wu M, Wu S, Almeida H, Meurs MJ, Kosseim L, Powlowski J, Butler G, Tsang A

Article GUID: 25754864

Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting.

Author(s): Badhan A, Wang YX, Gruninger R, Patton D, Powlowski J, Tsang A, McAllister TA

Biomed Res Int. 2015;2015:562952 Authors: Badhan A, Wang YX, Gruninger R, Patton D, Powlowski J, Tsang A, McAllister TA

Article GUID: 26180803


Title:Analytical and computational approaches to define the Aspergillus niger secretome.
Authors:Tsang AButler GPowlowski JPanisko EABaker SE
Link:https://www.ncbi.nlm.nih.gov/pubmed/19618504?dopt=Abstract
DOI:10.1016/j.fgb.2008.07.014
Category:Fungal Genet Biol
PMID:19618504
Dept Affiliation: BIOLOGY
1 Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke West, Montréal, Québec, Canada H4B 1R6, Department of Biology, Concordia University, Montréal, Québec, Canada. tsang@gene.concordia.ca

Description:

Analytical and computational approaches to define the Aspergillus niger secretome.

Fungal Genet Biol. 2009 Mar;46 Suppl 1:S153-S160

Authors: Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE

Abstract

We used computational and mass spectrometric approaches to characterize the Aspergillus niger secretome.The 11,200 gene models predicted in the genome of A. niger strain ATCC 1015 were the data source for the analysis. Depending on the computational methods used, 691 to 881 proteins were predicted to be secreted proteins. We cultured A. niger in six different media and analyzed the extracellular proteins produced using mass spectrometry. A total of 222 proteins were identified, with 39 proteins expressed under all six conditions and 74 proteins expressed under only one condition. The secreted proteins identified by mass spectrometry were used to guide the correction of about 20 gene models. Additional analysis focused on extracellular enzymes of interest for biomass processing. Of the 63 glycoside hydrolases predicted to be capable of hydrolyzing cellulose, hemicellulose or pectin, 94% of the exo-acting enzymes and only 18% of the endo-acting enzymes were experimentally detected.

PMID: 19618504 [PubMed - indexed for MEDLINE]