Keyword search (3,448 papers available)


Four Aromatic Intradiol Ring Cleavage Dioxygenases from Aspergillus niger.

Author(s): Semana P, Powlowski J

Ring cleavage dioxygenases catalyze the critical ring-opening step in the catabolism of aromatic compounds. The archetypal filamentous fungus Aspergillus niger previously has been reported to be able to utilize a range of monocyclic aromatic compounds as so...

Article GUID: 31540981

Characterization of active and inactive forms of the phenol hydroxylase stimulatory protein DmpM.

Author(s): Cadieux E, Powlowski J

Biochemistry. 1999 Aug 17;38(33):10714-22 Authors: Cadieux E, Powlowski J

Article GUID: 10451366

Biochemical and molecular characterization of a cellobiohydrolase from Trametes versicolor.

Author(s): Lahjouji K, Storms R, Xiao Z, Joung KB, Zheng Y, Powlowski J, Tsang A, Varin L

Appl Microbiol Biotechnol. 2007 May;75(2):337-46 Authors: Lahjouji K, Storms R, Xiao Z, Joung KB, Zheng Y, Powlowski J, Tsang A, Varin L

Article GUID: 17333176

A shared binding site for NAD+ and coenzyme A in an acetaldehyde dehydrogenase involved in bacterial degradation of aromatic compounds.

Author(s): Lei Y, Pawelek PD, Powlowski J

Biochemistry. 2008 Jul 01;47(26):6870-82 Authors: Lei Y, Pawelek PD, Powlowski J

Article GUID: 18537268

Analytical and computational approaches to define the Aspergillus niger secretome.

Author(s): Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE

Fungal Genet Biol. 2009 Mar;46 Suppl 1:S153-S160 Authors: Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE

Article GUID: 19618504

A molecular phylogeny of thermophilic fungi.

Author(s): Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan MC, Quenneville G, Tsang A

Fungal Biol. 2012 Apr;116(4):489-502 Authors: Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan MC, Quenneville G, Tsang A

Article GUID: 22483047

Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila.

Author(s): Kolbusz MA, Di Falco M, Ishmael N, Marqueteau S, Moisan MC, Baptista CDS, Powlowski J, Tsang A

Fungal Genet Biol. 2014 Nov;72:10-20 Authors: Kolbusz MA, Di Falco M, Ishmael N, Marqueteau S, Moisan MC, Baptista CDS, Powlowski J, Tsang A

Article GUID: 24881579

mycoCLAP, the database for characterized lignocellulose-active proteins of fungal origin: resource and text mining curation support.

Author(s): Strasser K, McDonnell E, Nyaga C, Wu M, Wu S, Almeida H, Meurs MJ, Kosseim L, Powlowski J, Butler G, Tsang A

Database (Oxford). 2015;2015: Authors: Strasser K, McDonnell E, Nyaga C, Wu M, Wu S, Almeida H, Meurs MJ, Kosseim L, Powlowski J, Butler G, Tsang A

Article GUID: 25754864

Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting.

Author(s): Badhan A, Wang YX, Gruninger R, Patton D, Powlowski J, Tsang A, McAllister TA

Biomed Res Int. 2015;2015:562952 Authors: Badhan A, Wang YX, Gruninger R, Patton D, Powlowski J, Tsang A, McAllister TA

Article GUID: 26180803


Title:mycoCLAP, the database for characterized lignocellulose-active proteins of fungal origin: resource and text mining curation support.
Authors:Strasser KMcDonnell ENyaga CWu MWu SAlmeida HMeurs MJKosseim LPowlowski JButler GTsang A
Link:https://www.ncbi.nlm.nih.gov/pubmed/25754864?dopt=Abstract
DOI:10.1093/database/bav008
Category:Database (Oxford)
PMID:25754864
Dept Affiliation: GENOMICS
1 Centre for Structural and Functional Genomics, Department of Computer Science and Software Engineering, Department of Chemistry and Biochemistry, and Department of Biology Concordia University, Montréal, QC, USA.
2 Centre for Structural and Functional Genomics, Department of Computer Science and Software Engineering, Department of Chemistry and Biochemistry, and Department of Biology Concordia University, Montréal, QC, USA Centre for Structural and Functional Genomics, Department of Computer Science and Software Engineering, Department of Chemistry and Biochemistry, and Department of Biology Concordia University, Montréal, QC, USA.
3 Centre for Structural and Functional Genomics, Department of Computer Science and Software Engineering, Department of Chemistry and Biochemistry, and Department of Biology Concordia University, Montréal, QC, USA Centre for Structural and Functional Genomics, Department of Computer Science and Software Engineering, Department of Chemistry and Biochemistry, and Department of Biology Concordia University, Montréal, QC, USA gregb@encs.concordia.ca.

Description:

mycoCLAP, the database for characterized lignocellulose-active proteins of fungal origin: resource and text mining curation support.

Database (Oxford). 2015;2015:

Authors: Strasser K, McDonnell E, Nyaga C, Wu M, Wu S, Almeida H, Meurs MJ, Kosseim L, Powlowski J, Butler G, Tsang A

Abstract

Enzymes active on components of lignocellulosic biomass are used for industrial applications ranging from food processing to biofuels production. These include a diverse array of glycoside hydrolases, carbohydrate esterases, polysaccharide lyases and oxidoreductases. Fungi are prolific producers of these enzymes, spurring fungal genome sequencing efforts to identify and catalogue the genes that encode them. To facilitate the functional annotation of these genes, biochemical data on over 800 fungal lignocellulose-degrading enzymes have been collected from the literature and organized into the searchable database, mycoCLAP (http://mycoclap.fungalgenomics.ca). First implemented in 2011, and updated as described here, mycoCLAP is capable of ranking search results according to closest biochemically characterized homologues: this improves the quality of the annotation, and significantly decreases the time required to annotate novel sequences. The database is freely available to the scientific community, as are the open source applications based on natural language processing developed to support the manual curation of mycoCLAP. Database URL: http://mycoclap.fungalgenomics.ca.

PMID: 25754864 [PubMed - indexed for MEDLINE]