Keyword search (3,619 papers available)


Four Aromatic Intradiol Ring Cleavage Dioxygenases from Aspergillus niger.

Author(s): Semana P, Powlowski J

Ring cleavage dioxygenases catalyze the critical ring-opening step in the catabolism of aromatic compounds. The archetypal filamentous fungus Aspergillus niger previously has been reported to be able to utilize a range of monocyclic aromatic compounds as so...

Article GUID: 31540981

Characterization of active and inactive forms of the phenol hydroxylase stimulatory protein DmpM.

Author(s): Cadieux E, Powlowski J

Biochemistry. 1999 Aug 17;38(33):10714-22 Authors: Cadieux E, Powlowski J

Article GUID: 10451366

Biochemical and molecular characterization of a cellobiohydrolase from Trametes versicolor.

Author(s): Lahjouji K, Storms R, Xiao Z, Joung KB, Zheng Y, Powlowski J, Tsang A, Varin L

Appl Microbiol Biotechnol. 2007 May;75(2):337-46 Authors: Lahjouji K, Storms R, Xiao Z, Joung KB, Zheng Y, Powlowski J, Tsang A, Varin L

Article GUID: 17333176

A shared binding site for NAD+ and coenzyme A in an acetaldehyde dehydrogenase involved in bacterial degradation of aromatic compounds.

Author(s): Lei Y, Pawelek PD, Powlowski J

Biochemistry. 2008 Jul 01;47(26):6870-82 Authors: Lei Y, Pawelek PD, Powlowski J

Article GUID: 18537268

Analytical and computational approaches to define the Aspergillus niger secretome.

Author(s): Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE

Fungal Genet Biol. 2009 Mar;46 Suppl 1:S153-S160 Authors: Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE

Article GUID: 19618504

A molecular phylogeny of thermophilic fungi.

Author(s): Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan MC, Quenneville G, Tsang A

Fungal Biol. 2012 Apr;116(4):489-502 Authors: Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan MC, Quenneville G, Tsang A

Article GUID: 22483047

Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila.

Author(s): Kolbusz MA, Di Falco M, Ishmael N, Marqueteau S, Moisan MC, Baptista CDS, Powlowski J, Tsang A

Fungal Genet Biol. 2014 Nov;72:10-20 Authors: Kolbusz MA, Di Falco M, Ishmael N, Marqueteau S, Moisan MC, Baptista CDS, Powlowski J, Tsang A

Article GUID: 24881579

mycoCLAP, the database for characterized lignocellulose-active proteins of fungal origin: resource and text mining curation support.

Author(s): Strasser K, McDonnell E, Nyaga C, Wu M, Wu S, Almeida H, Meurs MJ, Kosseim L, Powlowski J, Butler G, Tsang A

Database (Oxford). 2015;2015: Authors: Strasser K, McDonnell E, Nyaga C, Wu M, Wu S, Almeida H, Meurs MJ, Kosseim L, Powlowski J, Butler G, Tsang A

Article GUID: 25754864

Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting.

Author(s): Badhan A, Wang YX, Gruninger R, Patton D, Powlowski J, Tsang A, McAllister TA

Biomed Res Int. 2015;2015:562952 Authors: Badhan A, Wang YX, Gruninger R, Patton D, Powlowski J, Tsang A, McAllister TA

Article GUID: 26180803


Title:Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila.
Authors:Kolbusz MADi Falco MIshmael NMarqueteau SMoisan MCBaptista CDSPowlowski JTsang A
Link:https://www.ncbi.nlm.nih.gov/pubmed/24881579?dopt=Abstract
DOI:10.1016/j.fgb.2014.05.006
Category:Fungal Genet Biol
PMID:24881579
Dept Affiliation: BIOLOGY
1 Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada; Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada; Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada. Electronic address: magdalena.kolbusz@concordia.ca.
2 Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada. Electronic address: marcos.difalco@concordia.ca.
3 Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada. Electronic address: nadeeza.ishmael@concordia.ca.
4 Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada. Electronic address: sandrine.marqueteau@concordia.ca.
5 Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada. Electronic address: marie-claude.moisan@concordia.ca.
6 Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada. Electronic address: Cassio.Baptista@nrc-cnrc.gc.ca.
7 Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada; Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada. Electronic address: justin.powlowski@concordia.ca.
8 Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada; Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada. Electronic address: adrian.tsang@concordia.ca.

Description:

Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila.

Fungal Genet Biol. 2014 Nov;72:10-20

Authors: Kolbusz MA, Di Falco M, Ishmael N, Marqueteau S, Moisan MC, Baptista CDS, Powlowski J, Tsang A

Abstract

Myceliophthora thermophila is a thermophilic fungus whose genome encodes a wide range of carbohydrate-active enzymes (CAZymes) involved in plant biomass degradation. Such enzymes have potential applications in turning different kinds of lignocellulosic feedstock into sugar precursors for biofuels and chemicals. The present study examined and compared the transcriptomes and exoproteomes of M. thermophila during cultivation on different types of complex biomass to gain insight into how its secreted enzymatic machinery varies with different sources of lignocellulose. In the transcriptome analysis three monocot (barley, oat, triticale) and three dicot (alfalfa, canola, flax) plants were used whereas in the proteome analysis additional substrates, i.e. wood and corn stover pulps, were included. A core set of 59 genes encoding CAZymes was up-regulated in response to both monocot and dicot straws, including nine polysaccharide monooxygenases and GH10, but not GH11, xylanases. Genes encoding additional xylanolytic enzymes were up-regulated during growth on monocot straws, while genes encoding additional pectinolytic enzymes were up-regulated in response to dicot biomass. Exoproteome analysis was generally consistent with the conclusions drawn from transcriptome analysis, but additional CAZymes that accumulated to high levels were identified. Despite the wide variety of biomass sources tested some CAZy family members were not expressed under any condition. The results of this study provide a comprehensive view from both transcriptome and exoproteome levels, of how M. thermophila responds to a wide range of biomass sources using its genomic resources.

PMID: 24881579 [PubMed - indexed for MEDLINE]