Keyword search (3,168 papers available)


Improving Safety of MRI in Patients with Deep Brain Stimulation Devices.

Author(s): Boutet A, Chow CT, Narang K, Elias GJB, Neudorfer C, Germann J, Ranjan M, Loh A, Martin AJ, Kucharczyk W, Steele CJ, Hancu I, Rezai AR, Lozano AM

Radiology. 2020 Jun 23;:192291 Authors: Boutet A, Chow CT, Narang K, Elias GJB, Neudorfer C, Germann J, Ranjan M, Loh A, Martin AJ, Kucharczyk W, Steele CJ, Hancu I, Rezai AR, Lozano AM

Article GUID: 32573388

Investigating microstructural variation in the human hippocampus using non-negative matrix factorization.

Author(s): Patel R, Steele CJ, Chen A, Patel S, Devenyi GA, Germann J, Tardif CL, Chakravarty MM

Neuroimage. 2019 Nov 09;:116348 Authors: Patel R, Steele CJ, Chen A, Patel S, Devenyi GA, Germann J, Tardif CL, Chakravarty MM

Article GUID: 31715254

High resolution atlas of the venous brain vasculature from 7 T quantitative susceptibility maps.

Author(s): Huck J, Wanner Y, Fan AP, Jäger AT, Grahl S, Schneider U, Villringer A, Steele CJ, Tardif CL, Bazin PL, Gauthier CJ

Brain Struct Funct. 2019 Jul 05;: Authors: Huck J, Wanner Y, Fan AP, Jäger AT, Grahl S, Schneider U, Villringer A, Steele CJ, Tardif CL, Bazin PL, Gauthier CJ

Article GUID: 31278570

Higher cardiovascular fitness level is associated with lower cerebrovascular reactivity and perfusion in healthy older adults.

Author(s): Intzandt B, Sabra D, Foster C, Desjardins-Crépeau L, Hoge RD, Steele CJ, Bherer L, Gauthier CJ

J Cereb Blood Flow Metab. 2019 Jul 25;:271678X19862873 Authors: Intzandt B, Sabra D, Foster C, Desjardins-Crépeau L, Hoge RD, Steele CJ, Bherer L, Gauthier CJ

Article GUID: 31342831

Nighres: processing tools for high-resolution neuroimaging.

Author(s): Huntenburg JM, Steele CJ, Bazin PL

Gigascience. 2018 07 01;7(7): Authors: Huntenburg JM, Steele CJ, Bazin PL

Article GUID: 29982501

Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning.

Author(s): Penhune VB, Steele CJ

Behav Brain Res. 2012 Jan 15;226(2):579-91 Authors: Penhune VB, Steele CJ

Article GUID: 22004979

Advanced MRI techniques to improve our understanding of experience-induced neuroplasticity.

Author(s): Tardif CL, Gauthier CJ, Steele CJ, Bazin PL, Schäfer A, Schaefer A, Turner R, Villringer A

Neuroimage. 2016 05 01;131:55-72 Authors: Tardif CL, Gauthier CJ, Steele CJ, Bazin PL, Schäfer A, Schaefer A, Turner R, Villringer A

Article GUID: 26318050

Practice makes plasticity.

Author(s): Steele CJ, Zatorre RJ

Nat Neurosci. 2018 12;21(12):1645-1646 Authors: Steele CJ, Zatorre RJ

Article GUID: 30482944

Kinematic profiles suggest differential control processes involved in bilateral in-phase and anti-phase movements.

Author(s): Shih PC, Steele CJ, Nikulin V, Villringer A, Sehm B

Sci Rep. 2019 Mar 01;9(1):3273 Authors: Shih PC, Steele CJ, Nikulin V, Villringer A, Sehm B

Article GUID: 30824858

Neuroimaging Technological Advancements for Targeting in Functional Neurosurgery.

Author(s): Boutet A, Gramer R, Steele CJ, Elias GJB, Germann J, Maciel R, Kucharczyk W, Zrinzo L, Lozano AM, Fasano A

Curr Neurol Neurosci Rep. 2019 May 30;19(7):42 Authors: Boutet A, Gramer R, Steele CJ, Elias GJB, Germann J, Maciel R, Kucharczyk W, Zrinzo L, Lozano AM, Fasano A

Article GUID: 31144155

Investigation of the confounding effects of vasculature and metabolism on computational anatomy studies.

Author(s): Tardif CL, Steele CJ, Lampe L, Bazin PL, Ragert P, Villringer A, Gauthier CJ

Neuroimage. 2017 04 01;149:233-243 Authors: Tardif CL, Steele CJ, Lampe L, Bazin PL, Ragert P, Villringer A, Gauthier CJ

Article GUID: 28159689


Title:Investigation of the confounding effects of vasculature and metabolism on computational anatomy studies.
Authors:Tardif CLSteele CJLampe LBazin PLRagert PVillringer AGauthier CJ
Link:https://www.ncbi.nlm.nih.gov/pubmed/28159689?dopt=Abstract
Category:Neuroimage
PMID:28159689
Dept Affiliation: PERFORM
1 Douglas Mental Health University Institute, McGill University, Montreal, Canada.
2 Douglas Mental Health University Institute, McGill University, Montreal, Canada; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
3 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
4 University of Leipzig, Department of Sport Science, Leipzig, Germany.
5 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Cognitive Neurology, University Hospital, Leipzig, Germany; Mind & Brain Institute, Berlin School of Mind and Brain, Charité and Humboldt-University, Berlin, Germany.
6 Concordia University, Department of Physics, PERFORM Centre, Montreal, Canada. Electronic address: claudine.gauthier@concordia.ca.

Description:

Investigation of the confounding effects of vasculature and metabolism on computational anatomy studies.

Neuroimage. 2017 04 01;149:233-243

Authors: Tardif CL, Steele CJ, Lampe L, Bazin PL, Ragert P, Villringer A, Gauthier CJ

Abstract

Computational anatomy studies typically use T1-weighted magnetic resonance imaging contrast to look at local differences in cortical thickness or grey matter volume across time or subjects. This type of analysis is a powerful and non-invasive tool to probe anatomical changes associated with neurodevelopment, aging, disease or experience-induced plasticity. However, these comparisons could suffer from biases arising from vascular and metabolic subject- or time-dependent differences. Differences in blood flow and volume could be caused by vasodilation or differences in vascular density, and result in a larger signal contribution of the blood compartment within grey matter voxels. Metabolic changes could lead to differences in dissolved oxygen in brain tissue, leading to T1 shortening. Here, we analyze T1 maps and T1-weighted images acquired during different breathing conditions (ambient air, hypercapnia (increased CO2) and hyperoxia (increased O2)) to evaluate the effect size that can be expected from changes in blood flow, volume and dissolved O2 concentration in computational anatomy studies. Results show that increased blood volume from vasodilation during hypercapnia is associated with an overestimation of cortical thickness (1.85%) and grey matter volume (3.32%), and that both changes in O2 concentration and blood volume lead to changes in the T1 value of tissue. These results should be taken into consideration when interpreting existing morphometry studies and in future study design. Furthermore, this study highlights the overlap in structural and physiological MRI, which are conventionally interpreted as two independent modalities.

PMID: 28159689 [PubMed - indexed for MEDLINE]