Keyword search (3,448 papers available)


Mechanisms that Link Chronological Aging to Cellular Quiescence in Budding Yeast.

Author(s): Mohammad K, Baratang Junio JA, Tafakori T, Orfanos E, Titorenko VI

Int J Mol Sci. 2020 Jul 02;21(13): Authors: Mohammad K, Baratang Junio JA, Tafakori T, Orfanos E, Titorenko VI

Article GUID: 32630624

Discovery of fifteen new geroprotective plant extracts and identification of cellular processes they affect to prolong the chronological lifespan of budding yeast.

Author(s): Dakik P, Rodriguez MEL, Junio JAB, Mitrofanova D, Medkour Y, Tafakori T, Taifour T, Lutchman V, Samson E, Arlia-Ciommo A, Rukundo B, Simard ...

Oncotarget. 2020 Jun 09;11(23):2182-2203 Authors: Dakik P, Rodriguez MEL, Junio JAB, Mitrofanova D, Medkour Y, Tafakori T, Taifour T, Lutchman V, Samson E, Arlia-Ciommo A, Rukundo B, Simard É...

Article GUID: 32577164

Mechanisms by which PE21, an extract from the white willow Salix alba, delays chronological aging in budding yeast.

Author(s): Medkour Y, Mohammad K, Arlia-Ciommo A, Svistkova V, Dakik P, Mitrofanova D, Rodriguez MEL, Junio JAB, Taifour T, Escudero P, Goltsios FF, So...

Oncotarget. 2019 Oct 08;10(56):5780-5816 Authors: Medkour Y, Mohammad K, Arlia-Ciommo A, Svistkova V, Dakik P, Mitrofanova D, Rodriguez MEL, Junio JAB, Taifour T, Escudero P, Goltsios FF, Soodbakh...

Article GUID: 31645900

Aging and Age-related Disorders: From Molecular Mechanisms to Therapies.

Author(s): Titorenko VI

Int J Mol Sci. 2019 Jul 03;20(13): Authors: Titorenko VI

Article GUID: 31277345

Metabolomic and lipidomic analyses of chronologically aging yeast.

Author(s): Richard VR, Bourque SD, Titorenko VI

Methods Mol Biol. 2014;1205:359-73 Authors: Richard VR, Bourque SD, Titorenko VI

Article GUID: 25213255

Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome.

Author(s): Beach A, Richard VR, Bourque S, Boukh-Viner T, Kyryakov P, Gomez-Perez A, Arlia-Ciommo A, Feldman R, Leonov A, Piano A, Svistkova V, Titorenko VI

Cell Cycle. 2015;14(11):1643-56 Authors: Beach A, Richard VR, Bourque S, Boukh-Viner T, Kyryakov P, Gomez-Perez A, Arlia-Ciommo A, Feldman R, Leonov A, Piano A, Svistkova V, Titorenko VI

Article GUID: 25839782

Diindolylmethane and its halogenated derivatives induce protective autophagy in human prostate cancer cells via induction of the oncogenic protein AEG-1 and activation of AMP-activated protein kinase (AMPK).

Author(s): Draz H, Goldberg AA, Titorenko VI, Tomlinson Guns ES, Safe SH, Sanderson JT

Cell Signal. 2017 12;40:172-182 Authors: Draz H, Goldberg AA, Titorenko VI, Tomlinson Guns ES, Safe SH, Sanderson JT

Article GUID: 28923415

Lipid metabolism and transport define longevity of the yeast Saccharomyces cerevisiae.

Author(s): Mitrofanova D, Dakik P, McAuley M, Medkour Y, Mohammad K, Titorenko VI

Front Biosci (Landmark Ed). 2018 Jan 01;23:1166-1194 Authors: Mitrofanova D, Dakik P, McAuley M, Medkour Y, Mohammad K, Titorenko VI

Article GUID: 28930594

Caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of a quiescent state, entry into a non-quiescent state and survival in the non-quiescent state.

Author(s): Leonov A, Feldman R, Piano A, Arlia-Ciommo A, Lutchman V, Ahmadi M, Elsaser S, Fakim H, Heshmati-Moghaddam M, Hussain A, Orfali S, Rajen H, ...

Oncotarget. 2017 Sep 19;8(41):69328-69350 Authors: Leonov A, Feldman R, Piano A, Arlia-Ciommo A, Lutchman V, Ahmadi M, Elsaser S, Fakim H, Heshmati-Moghaddam M, Hussain A, Orfali S, Rajen H, Roofi...

Article GUID: 29050207

Some Metabolites Act as Second Messengers in Yeast Chronological Aging.

Author(s): Mohammad K, Dakik P, Medkour Y, McAuley M, Mitrofanova D, Titorenko VI

Int J Mol Sci. 2018 Mar 15;19(3): Authors: Mohammad K, Dakik P, Medkour Y, McAuley M, Mitrofanova D, Titorenko VI

Article GUID: 29543708

Yeast Cells Exposed to Exogenous Palmitoleic Acid Either Adapt to Stress and Survive or Commit to Regulated Liponecrosis and Die.

Author(s): Mohammad K, Dakik P, Medkour Y, McAuley M, Mitrofanova D, Titorenko VI

Oxid Med Cell Longev. 2018;2018:3074769 Authors: Mohammad K, Dakik P, Medkour Y, McAuley M, Mitrofanova D, Titorenko VI

Article GUID: 29636840

Caloric restriction delays yeast chronological aging by remodeling carbohydrate and lipid metabolism, altering peroxisomal and mitochondrial functionalities, and postponing the onsets of apoptotic and liponecrotic modes of regulated cell death.

Author(s): Arlia-Ciommo A, Leonov A, Beach A, Richard VR, Bourque SD, Burstein MT, Kyryakov P, Gomez-Perez A, Koupaki O, Feldman R, Titorenko VI

Oncotarget. 2018 Mar 23;9(22):16163-16184 Authors: Arlia-Ciommo A, Leonov A, Beach A, Richard VR, Bourque SD, Burstein MT, Kyryakov P, Gomez-Perez A, Koupaki O, Feldman R, Titorenko VI

Article GUID: 29662634

Yeast chronological aging is linked to cell cycle regulation.

Author(s): Mohammad K, Titorenko VI

Cell Cycle. 2018;17(9):1035-1036 Authors: Mohammad K, Titorenko VI PMID: 29895227 [PubMed - in process]

Article GUID: 29895227

Molecular and Cellular Mechanisms of Aging and Age-related Disorders.

Author(s): Titorenko VI

Int J Mol Sci. 2018 Jul 14;19(7): Authors: Titorenko VI PMID: 30011889 [PubMed - indexed for MEDLINE]

Article GUID: 30011889

Mechanisms through which lithocholic acid delays yeast chronological aging under caloric restriction conditions.

Author(s): Arlia-Ciommo A, Leonov A, Mohammad K, Beach A, Richard VR, Bourque SD, Burstein MT, Goldberg AA, Kyryakov P, Gomez-Perez A, Koupaki O, Titorenko VI

Oncotarget. 2018 Oct 09;9(79):34945-34971 Authors: Arlia-Ciommo A, Leonov A, Mohammad K, Beach A, Richard VR, Bourque SD, Burstein MT, Goldberg AA, Kyryakov P, Gomez-Perez A, Koupaki O, Titorenko VI

Article GUID: 30405886

Pairwise combinations of chemical compounds that delay yeast chronological aging through different signaling pathways display synergistic effects on the extent of aging delay.

Author(s): Dakik P, McAuley M, Chancharoen M, Mitrofanova D, Lozano Rodriguez ME, Baratang Junio JA, Lutchman V, Cortes B, Simard É, Titorenko VI

Oncotarget. 2019 Jan 08;10(3):313-338 Authors: Dakik P, McAuley M, Chancharoen M, Mitrofanova D, Lozano Rodriguez ME, Baratang Junio JA, Lutchman V, Cortes B, Simard É, Titorenko VI

Article GUID: 30719227

Quiescence Entry, Maintenance, and Exit in Adult Stem Cells.

Author(s): Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI

Int J Mol Sci. 2019 May 01;20(9): Authors: Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI

Article GUID: 31052375

Mechanisms Through Which Some Mitochondria-Generated Metabolites Act as Second Messengers That Are Essential Contributors to the Aging Process in Eukaryotes Across Phyla.

Author(s): Dakik P, Medkour Y, Mohammad K, Titorenko VI

Front Physiol. 2019;10:461 Authors: Dakik P, Medkour Y, Mohammad K, Titorenko VI

Article GUID: 31057428


Title:Mechanisms that Link Chronological Aging to Cellular Quiescence in Budding Yeast.
Authors:Mohammad KBaratang Junio JATafakori TOrfanos ETitorenko VI
Link:https://www.ncbi.nlm.nih.gov/pubmed/32630624?dopt=Abstract
DOI:10.3390/ijms21134717
Category:Int J Mol Sci
PMID:32630624
Dept Affiliation: BIOLOGY
1 Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada.

Description:

Mechanisms that Link Chronological Aging to Cellular Quiescence in Budding Yeast.

Int J Mol Sci. 2020 Jul 02;21(13):

Authors: Mohammad K, Baratang Junio JA, Tafakori T, Orfanos E, Titorenko VI

Abstract

After Saccharomyces cerevisiae cells cultured in a medium with glucose consume glucose, the sub-populations of quiescent and non-quiescent cells develop in the budding yeast culture. An age-related chronology of quiescent and non-quiescent yeast cells within this culture is discussed here. We also describe various hallmarks of quiescent and non-quiescent yeast cells. A complex aging-associated program underlies cellular quiescence in budding yeast. This quiescence program includes a cascade of consecutive cellular events orchestrated by an intricate signaling network. We examine here how caloric restriction, a low-calorie diet that extends lifespan and healthspan in yeast and other eukaryotes, influences the cellular quiescence program in S. cerevisiae. One of the main objectives of this review is to stimulate an exploration of the mechanisms that link cellular quiescence to chronological aging of budding yeast. Yeast chronological aging is defined by the length of time during which a yeast cell remains viable after its growth and division are arrested, and it becomes quiescent. We propose a hypothesis on how caloric restriction can slow chronological aging of S. cerevisiae by altering the chronology and properties of quiescent cells. Our hypothesis posits that caloric restriction delays yeast chronological aging by targeting four different processes within quiescent cells.

PMID: 32630624 [PubMed - in process]