Keyword search (3,448 papers available)


Penicillium subrubescens adapts its enzyme production to the composition of plant biomass.

Author(s): Dilokpimol A, Peng M, Di Falco M, Chin A Woeng T, Hegi RMW, Granchi Z, Tsang A, Hildén KS, Mäkelä MR, de Vries RP

Bioresour Technol. 2020 May 05;311:123477 Authors: Dilokpimol A, Peng M, Di Falco M, Chin A Woeng T, Hegi RMW, Granchi Z, Tsang A, Hildén KS, Mäkelä MR, de Vries RP

Article GUID: 32408196

Effect and ameliorative mechanisms of polyoxometalates on the denitrification under sulfonamide antibiotics stress.

Author(s): Guo H, Chen Z, Lu C, Guo J, Li H, Song Y, Han Y, Hou Y

Bioresour Technol. 2020 Feb 22;305:123073 Authors: Guo H, Chen Z, Lu C, Guo J, Li H, Song Y, Han Y, Hou Y

Article GUID: 32145698

Effect of dissolved oxygen on simultaneous removal of ammonia, nitrate and phosphorus via biological aerated filter with sulfur and pyrite as composite fillers.

Author(s): Li Y, Guo J, Li H, Song Y, Chen Z, Lu C, Han Y, Hou Y

Bioresour Technol. 2019 Oct 28;296:122340 Authors: Li Y, Guo J, Li H, Song Y, Chen Z, Lu C, Han Y, Hou Y

Article GUID: 31704601

Enhanced denitrification performance and biocatalysis mechanisms of polyoxometalates as environmentally-friendly inorganic redox mediators.

Author(s): Guo H, Chen Z, Guo J, Lu C, Song Y, Han Y, Li H, Hou Y

Bioresour Technol. 2019 Jul 16;291:121816 Authors: Guo H, Chen Z, Guo J, Lu C, Song Y, Han Y, Li H, Hou Y

Article GUID: 31344631

Malbranchea cinnamomea: A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes.

Author(s): Mahajan C, Basotra N, Singh S, Di Falco M, Tsang A, Chadha BS

Bioresour Technol. 2016 Jan;200:55-63 Authors: Mahajan C, Basotra N, Singh S, Di Falco M, Tsang A, Chadha BS

Article GUID: 26476165

Evaluation of secretome of highly efficient lignocellulolytic Penicillium sp. Dal 5 isolated from rhizosphere of conifers.

Author(s): Rai R, Kaur B, Singh S, Di Falco M, Tsang A, Chadha BS

Bioresour Technol. 2016 Sep;216:958-67 Authors: Rai R, Kaur B, Singh S, Di Falco M, Tsang A, Chadha BS

Article GUID: 27341464

Mycothermus thermophilus (Syn. Scytalidium thermophilum): Repertoire of a diverse array of efficient cellulases and hemicellulases in the secretome revealed

Author(s): Neha Basotra

Mycothermus thermophilus (Syn. Scytalidium thermophilum/Humicola insolens), a thermophilic fungus, is being reported to produce appreciable titers of cellulases and hemicellulases during shake flask culturing on cellulose/wheat-bran/rice straw based product...

Article GUID: 27744242

Identification of novel enzymes to enhance the ruminal digestion of barley straw

Author(s): Badhan A; Ribeiro GO; Jones DR; Wang Y; Abbott DW; Di Falco M; Tsang A; McAllister TA;

Crude enzyme extracts typically contain a broad spectrum of enzyme activities, most of which are redundant to those naturally produced by the rumen microbiome. Identification of enzyme activities that are synergistic to those produced by the rumen microbiom...

Article GUID: 29621684

Thermostable xylanases from thermophilic fungi and bacteria: Current perspective.

Author(s): Chadha BS, Kaur B, Basotra N, Tsang A, Pandey A

Bioresour Technol. 2019 Apr;277:195-203 Authors: Chadha BS, Kaur B, Basotra N, Tsang A, Pandey A

Article GUID: 30679061

Rapid of cultivation dissimilatory perchlorate reducing granular sludge and characterization of the granulation process.

Author(s): Yin P, Guo J, Xiao S, Chen Z, Song Y, Ren X

Bioresour Technol. 2019 Mar;276:260-268 Authors: Yin P, Guo J, Xiao S, Chen Z, Song Y, Ren X

Article GUID: 30640020

A combined heterotrophic and sulfur-based autotrophic process to reduce high concentration perchlorate via anaerobic baffled reactors: Performance advantages of a step-feeding strategy.

Author(s): Li K, Guo J, Li H, Han Y, Chen Z, Song Y, Xing Y, Zhang C

Bioresour Technol. 2019 May;279:297-306 Authors: Li K, Guo J, Li H, Han Y, Chen Z, Song Y, Xing Y, Zhang C

Article GUID: 30738356


Title:Penicillium subrubescens adapts its enzyme production to the composition of plant biomass.
Authors:Dilokpimol APeng MDi Falco MChin A Woeng THegi RMWGranchi ZTsang AHildén KSMäkelä MRde Vries RP
Link:https://www.ncbi.nlm.nih.gov/pubmed/32408196?dopt=Abstract
DOI:10.1016/j.biortech.2020.123477
Category:Bioresour Technol
PMID:32408196
Dept Affiliation: GENOMICS
1 Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
2 Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke West, H4B 1R6 Montreal, Quebec, Canada.
3 GenomeScan B.V, Plesmanlaan 1/D, 2333 BZ Leiden, The Netherlands.
4 Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
5 Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands. Electronic address: r.devries@wi.knaw.nl.

Description:

Penicillium subrubescens adapts its enzyme production to the composition of plant biomass.

Bioresour Technol. 2020 May 05;311:123477

Authors: Dilokpimol A, Peng M, Di Falco M, Chin A Woeng T, Hegi RMW, Granchi Z, Tsang A, Hildén KS, Mäkelä MR, de Vries RP

Abstract

Penicillium subrubescens is able to degrade a broad range of plant biomass and it has an expanded set of Carbohydrate Active enzyme (CAZyme)-encoding genes in comparison to other Penicillium species. Here we used exoproteome and transcriptome analysis to demonstrate the versatile plant biomass degradation mechanism by P. subrubescens during growth on wheat bran and sugar beet pulp. On wheat bran P. subrubescens degraded xylan main chain and side residues from Day 2 of cultivation, whereas it started to degrade side chains of pectin in sugar beet pulp prior to attacking the main chain on Day 3. In addition, on Day 3 the cellulolytic enzymes were highly increased. Our results confirm that P. subrubescens adapts its enzyme production to the available plant biomass and is a promising new fungal cell factory for the production of CAZymes.

PMID: 32408196 [PubMed - as supplied by publisher]