Keyword search (3,448 papers available)


Penicillium subrubescens adapts its enzyme production to the composition of plant biomass.

Author(s): Dilokpimol A, Peng M, Di Falco M, Chin A Woeng T, Hegi RMW, Granchi Z, Tsang A, Hildén KS, Mäkelä MR, de Vries RP

Bioresour Technol. 2020 May 05;311:123477 Authors: Dilokpimol A, Peng M, Di Falco M, Chin A Woeng T, Hegi RMW, Granchi Z, Tsang A, Hildén KS, Mäkelä MR, de Vries RP

Article GUID: 32408196

Effect and ameliorative mechanisms of polyoxometalates on the denitrification under sulfonamide antibiotics stress.

Author(s): Guo H, Chen Z, Lu C, Guo J, Li H, Song Y, Han Y, Hou Y

Bioresour Technol. 2020 Feb 22;305:123073 Authors: Guo H, Chen Z, Lu C, Guo J, Li H, Song Y, Han Y, Hou Y

Article GUID: 32145698

Effect of dissolved oxygen on simultaneous removal of ammonia, nitrate and phosphorus via biological aerated filter with sulfur and pyrite as composite fillers.

Author(s): Li Y, Guo J, Li H, Song Y, Chen Z, Lu C, Han Y, Hou Y

Bioresour Technol. 2019 Oct 28;296:122340 Authors: Li Y, Guo J, Li H, Song Y, Chen Z, Lu C, Han Y, Hou Y

Article GUID: 31704601

Enhanced denitrification performance and biocatalysis mechanisms of polyoxometalates as environmentally-friendly inorganic redox mediators.

Author(s): Guo H, Chen Z, Guo J, Lu C, Song Y, Han Y, Li H, Hou Y

Bioresour Technol. 2019 Jul 16;291:121816 Authors: Guo H, Chen Z, Guo J, Lu C, Song Y, Han Y, Li H, Hou Y

Article GUID: 31344631

Malbranchea cinnamomea: A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes.

Author(s): Mahajan C, Basotra N, Singh S, Di Falco M, Tsang A, Chadha BS

Bioresour Technol. 2016 Jan;200:55-63 Authors: Mahajan C, Basotra N, Singh S, Di Falco M, Tsang A, Chadha BS

Article GUID: 26476165

Evaluation of secretome of highly efficient lignocellulolytic Penicillium sp. Dal 5 isolated from rhizosphere of conifers.

Author(s): Rai R, Kaur B, Singh S, Di Falco M, Tsang A, Chadha BS

Bioresour Technol. 2016 Sep;216:958-67 Authors: Rai R, Kaur B, Singh S, Di Falco M, Tsang A, Chadha BS

Article GUID: 27341464

Mycothermus thermophilus (Syn. Scytalidium thermophilum): Repertoire of a diverse array of efficient cellulases and hemicellulases in the secretome revealed

Author(s): Neha Basotra

Mycothermus thermophilus (Syn. Scytalidium thermophilum/Humicola insolens), a thermophilic fungus, is being reported to produce appreciable titers of cellulases and hemicellulases during shake flask culturing on cellulose/wheat-bran/rice straw based product...

Article GUID: 27744242

Identification of novel enzymes to enhance the ruminal digestion of barley straw

Author(s): Badhan A; Ribeiro GO; Jones DR; Wang Y; Abbott DW; Di Falco M; Tsang A; McAllister TA;

Crude enzyme extracts typically contain a broad spectrum of enzyme activities, most of which are redundant to those naturally produced by the rumen microbiome. Identification of enzyme activities that are synergistic to those produced by the rumen microbiom...

Article GUID: 29621684

Thermostable xylanases from thermophilic fungi and bacteria: Current perspective.

Author(s): Chadha BS, Kaur B, Basotra N, Tsang A, Pandey A

Bioresour Technol. 2019 Apr;277:195-203 Authors: Chadha BS, Kaur B, Basotra N, Tsang A, Pandey A

Article GUID: 30679061

Rapid of cultivation dissimilatory perchlorate reducing granular sludge and characterization of the granulation process.

Author(s): Yin P, Guo J, Xiao S, Chen Z, Song Y, Ren X

Bioresour Technol. 2019 Mar;276:260-268 Authors: Yin P, Guo J, Xiao S, Chen Z, Song Y, Ren X

Article GUID: 30640020

A combined heterotrophic and sulfur-based autotrophic process to reduce high concentration perchlorate via anaerobic baffled reactors: Performance advantages of a step-feeding strategy.

Author(s): Li K, Guo J, Li H, Han Y, Chen Z, Song Y, Xing Y, Zhang C

Bioresour Technol. 2019 May;279:297-306 Authors: Li K, Guo J, Li H, Han Y, Chen Z, Song Y, Xing Y, Zhang C

Article GUID: 30738356


Title:A combined heterotrophic and sulfur-based autotrophic process to reduce high concentration perchlorate via anaerobic baffled reactors: Performance advantages of a step-feeding strategy.
Authors:Li KGuo JLi HHan YChen ZSong YXing YZhang C
Link:https://www.ncbi.nlm.nih.gov/pubmed/30738356?dopt=Abstract
Category:Bioresour Technol
PMID:30738356
Dept Affiliation: ENCS
1 Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China.
2 Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China. Electronic address: jianbguo@163.com.
3 Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W. Montreal, Quebec, Canada.
4 Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.

Description:

A combined heterotrophic and sulfur-based autotrophic process to reduce high concentration perchlorate via anaerobic baffled reactors: Performance advantages of a step-feeding strategy.

Bioresour Technol. 2019 May;279:297-306

Authors: Li K, Guo J, Li H, Han Y, Chen Z, Song Y, Xing Y, Zhang C

Abstract

The combined anaerobic baffled reactors (ABRs) of heterotrophic and sulfur-based autotrophic processes were first investigated for the removal of high perchlorate concentration under different feeding strategies. The removal efficiency of the step-feeding ABR (SF-ABR) reached 97.56% at 800?mg/L perchlorate, which was significantly superior to the normal-feeding ABR (NF-ABR). In three components of the extracellular polymeric substances (EPS), the fluorescence intensity of the tryptophan-like component were identified by fluorescence excitation-emission matrix (EEM) spectra with parallel factor (PARAFAC) analysis, and exhibited a positive relationship with the perchlorate removal rate in the heterotrophic perchlorate reduction unit (HPR unit) of the SF-ABR (R2?=?0.9791) and NF-ABR (R2?=?0.9860). Bacterial community analysis suggested the dominating perchlorate reducing bacteria and the diversity in two ABRs. Principal component analysis indicated that the electron donor affected the microbial community structures. The study confirms that the SF-ABR is a powerful bioreactor for the combined heterotrophic and sulfur-based autotrophic process.

PMID: 30738356 [PubMed - in process]