Keyword search (3,448 papers available)


Effect of Fe2+ ions on gypsum precipitation during bulk crystallization of reverse osmosis concentrates.

Author(s): Melliti E, Touati K, Van der Bruggen B, Elfil H

In reverse osmosis desalination, the concentrate is a saline solution that may become supersaturated. Heterogeneous nucleation of salts occurs at the membrane surface, resulting in the buildup of inorganic deposits on the membrane. The inorganic nucleation ...

Article GUID: 32814139

Effects of chronic exposure to selenomethionine on social learning outcomes in zebrafish (Danio rerio): serotonergic dysregulation and oxidative stress in the brain.

Author(s): Attaran A, Salahinejad A, Naderi M, Crane AL, Niyogi S, Chivers DP

Chemosphere. 2020 Jan 11;247:125898 Authors: Attaran A, Salahinejad A, Naderi M, Crane AL, Niyogi S, Chivers DP

Article GUID: 31972490

Exploring the use of ceramic disk filter coated with Ag/ZnO nanocomposites as an innovative approach for removing Escherichia coli from household drinking water.

Author(s): Huang J, Huang G, An C, Xin X, Chen X, Zhao Y, Feng R, Xiong W

Chemosphere. 2019 Dec 06;245:125545 Authors: Huang J, Huang G, An C, Xin X, Chen X, Zhao Y, Feng R, Xiong W

Article GUID: 31864067

A biophysiological perspective on enhanced nitrate removal from decentralized domestic sewage using gravitational-flow multi-soil-layering systems.

Author(s): Song P, Huang G, Hong Y, An C, Xin X, Zhang P

Chemosphere. 2019 Sep 14;240:124868 Authors: Song P, Huang G, Hong Y, An C, Xin X, Zhang P

Article GUID: 31542583

Electrochemical efficacy of a carboxylated multiwalled carbon nanotube filter for the removal of ibuprofen from aqueous solutions under acidic conditions.

Author(s): Bakr AR, Rahaman MS

Chemosphere. 2016 Jun;153:508-20 Authors: Bakr AR, Rahaman MS

Article GUID: 27035389

Electro-demulsification of water-in-oil suspensions enhanced with implementing various additives.

Author(s): Taslimi Taleghani S, Fellah Jahromi A, Elektorowicz M

Chemosphere. 2019 May 20;233:157-163 Authors: Taslimi Taleghani S, Fellah Jahromi A, Elektorowicz M

Article GUID: 31173953

Hierarchical magnetic petal-like Fe3O4-ZnO@g-C3N4 for removal of sulfamethoxazole, suppression of photocorrosion, by-products identification and toxicity assessment

Author(s): Mirzaei A; Chen Z; Haghighat F; Yerushalmi L;

Herein, a petal-like photocatalyst, Fe3O4-ZnO@g-C3N4 (FZG) with different g-C3N4 to ZnO ratios was synthesized with hierarchical structure. The FZG1 photocatalyst, having the weight ratio of 1:1 for the initial urea and Fe3O4-ZnO (Fe-ZnO), presented the hig...

Article GUID: 29705637

Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance.

Author(s): Mamaghani AH, Haghighat F, Lee CS

Chemosphere. 2019 Mar;219:804-825 Authors: Mamaghani AH, Haghighat F, Lee CS

Article GUID: 30572234

Wastewater treatment in amine-based carbon capture.

Author(s): Dong C, Huang G, Cheng G, An C, Yao Y, Chen X, Chen J

Chemosphere. 2019 May;222:742-756 Authors: Dong C, Huang G, Cheng G, An C, Yao Y, Chen X, Chen J

Article GUID: 30738317


Title:Exploring the use of ceramic disk filter coated with Ag/ZnO nanocomposites as an innovative approach for removing Escherichia coli from household drinking water.
Authors:Huang JHuang GAn CXin XChen XZhao YFeng RXiong W
Link:https://www.ncbi.nlm.nih.gov/pubmed/31864067?dopt=Abstract
DOI:10.1016/j.chemosphere.2019.125545
Category:Chemosphere
PMID:31864067
Dept Affiliation: ENCS
1 Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
2 Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada. Electronic address: huang@iseis.org.
3 Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada.
4 Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, A1B 3X5, Canada.
5 Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada.
6 MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
7 Canadian Light Source, Saskatoon, Saskatchewan, S7N 2 V3, Canada.
8 Stantec Consulting Ltd, Saskatoon, S7K 0K3, Canada.

Description:

Exploring the use of ceramic disk filter coated with Ag/ZnO nanocomposites as an innovative approach for removing Escherichia coli from household drinking water.

Chemosphere. 2019 Dec 06;245:125545

Authors: Huang J, Huang G, An C, Xin X, Chen X, Zhao Y, Feng R, Xiong W

Abstract

Ceramic water filter is suitable for low-income families and rural communities in developing countries to obtain safe drinking water because of its low cost and good performance. As an innovative effort, the ceramic disk filter coated with Ag/ZnO nanocomposites (AZ-CDF) was proposed in this study. The manufacture of AZ-CDFs was optimized by experiments based on the Box-Behnken design. The results of thermal field emission scanning electron microscopy (TFE-SEM) and very powerful elemental and structural probe employing radiation from a synchrotron (VESPERS) indicated that Ag/ZnO nanocomposites were mainly distributed on the upper surface of AZ-CDF. The antibacterial activity of AZ-CDF was investigated by detecting the variation of cell status and intracellular reactive oxygen species during a period of time using flow cytometry. Both non-photocatalytic and photocatalytic antibacterial activities of Ag/ZnO nanocomposite contributed to the bacterial reduction property of AZ-CDF. During filtration, the initial Escherichia coli (E. coli) concentration and illumination intensity also influenced the E. coli removal performance of AZ-CDF. When the light illumination intensity was 7000 Lux, AZ-CDF was appropriate to treat the water contaminated by E. coli concentration of less than 103 cfu/mL. Increasing illumination intensity resulted in the improvement of E. coli removal performance of AZ-CDF. It was concluded the main mechanisms for the E. coli removal of AZ-CDF were filtration, non-photocatalytic and photocatalytic antibacterial activities.

PMID: 31864067 [PubMed - as supplied by publisher]