Keyword search (3,448 papers available)


Effect of Fe2+ ions on gypsum precipitation during bulk crystallization of reverse osmosis concentrates.

Author(s): Melliti E, Touati K, Van der Bruggen B, Elfil H

In reverse osmosis desalination, the concentrate is a saline solution that may become supersaturated. Heterogeneous nucleation of salts occurs at the membrane surface, resulting in the buildup of inorganic deposits on the membrane. The inorganic nucleation ...

Article GUID: 32814139

Effects of chronic exposure to selenomethionine on social learning outcomes in zebrafish (Danio rerio): serotonergic dysregulation and oxidative stress in the brain.

Author(s): Attaran A, Salahinejad A, Naderi M, Crane AL, Niyogi S, Chivers DP

Chemosphere. 2020 Jan 11;247:125898 Authors: Attaran A, Salahinejad A, Naderi M, Crane AL, Niyogi S, Chivers DP

Article GUID: 31972490

Exploring the use of ceramic disk filter coated with Ag/ZnO nanocomposites as an innovative approach for removing Escherichia coli from household drinking water.

Author(s): Huang J, Huang G, An C, Xin X, Chen X, Zhao Y, Feng R, Xiong W

Chemosphere. 2019 Dec 06;245:125545 Authors: Huang J, Huang G, An C, Xin X, Chen X, Zhao Y, Feng R, Xiong W

Article GUID: 31864067

A biophysiological perspective on enhanced nitrate removal from decentralized domestic sewage using gravitational-flow multi-soil-layering systems.

Author(s): Song P, Huang G, Hong Y, An C, Xin X, Zhang P

Chemosphere. 2019 Sep 14;240:124868 Authors: Song P, Huang G, Hong Y, An C, Xin X, Zhang P

Article GUID: 31542583

Electrochemical efficacy of a carboxylated multiwalled carbon nanotube filter for the removal of ibuprofen from aqueous solutions under acidic conditions.

Author(s): Bakr AR, Rahaman MS

Chemosphere. 2016 Jun;153:508-20 Authors: Bakr AR, Rahaman MS

Article GUID: 27035389

Electro-demulsification of water-in-oil suspensions enhanced with implementing various additives.

Author(s): Taslimi Taleghani S, Fellah Jahromi A, Elektorowicz M

Chemosphere. 2019 May 20;233:157-163 Authors: Taslimi Taleghani S, Fellah Jahromi A, Elektorowicz M

Article GUID: 31173953

Hierarchical magnetic petal-like Fe3O4-ZnO@g-C3N4 for removal of sulfamethoxazole, suppression of photocorrosion, by-products identification and toxicity assessment

Author(s): Mirzaei A; Chen Z; Haghighat F; Yerushalmi L;

Herein, a petal-like photocatalyst, Fe3O4-ZnO@g-C3N4 (FZG) with different g-C3N4 to ZnO ratios was synthesized with hierarchical structure. The FZG1 photocatalyst, having the weight ratio of 1:1 for the initial urea and Fe3O4-ZnO (Fe-ZnO), presented the hig...

Article GUID: 29705637

Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance.

Author(s): Mamaghani AH, Haghighat F, Lee CS

Chemosphere. 2019 Mar;219:804-825 Authors: Mamaghani AH, Haghighat F, Lee CS

Article GUID: 30572234

Wastewater treatment in amine-based carbon capture.

Author(s): Dong C, Huang G, Cheng G, An C, Yao Y, Chen X, Chen J

Chemosphere. 2019 May;222:742-756 Authors: Dong C, Huang G, Cheng G, An C, Yao Y, Chen X, Chen J

Article GUID: 30738317


Title:Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance.
Authors:Mamaghani AHHaghighat FLee CS
Link:https://www.ncbi.nlm.nih.gov/pubmed/30572234?dopt=Abstract
Category:Chemosphere
PMID:30572234
Dept Affiliation: ENCS
1 Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada. Electronic address: alireza.haghighatmamaghani@mail.concordia.ca.
2 Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada. Electronic address: fariborz.haghighat@concordia.ca.
3 Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada. Electronic address: chang-seo.lee@concordia.ca.

Description:

Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance.

Chemosphere. 2019 Mar;219:804-825

Authors: Mamaghani AH, Haghighat F, Lee CS

Abstract

Photocatalytic oxidation (PCO) is a well-known technology for air purification and has been extensively studied for removal of many air pollutants. Titanium dioxide (TiO2) is the most investigated photocatalyst in the field of environmental remediation owed to its chemical stability, non-toxicity, and suitable positions of valence and conduction bands. Various preparation techniques including sol-gel, flame hydrolysis, water-in-oil microemulsion, chemical vapour deposition, solvothermal, and hydrothermal have been employed to obtain TiO2 materials. Hydro-/Solvothermal (HST) synthesis, focus of the present work, can be defined as a preparation method in which crystal growth occurs in a solvent at relatively low temperature (<200?°C) and above atmospheric pressure. This paper aims to provide a comprehensive and critical review of current knowledge regarding the application of HST synthesis for fabrication of TiO2 nanostructures for indoor air purification. TiO2 nanostructures are categorized from the morphological standpoint (e.g. nanoparticles, nanotubes, nanosheets, and hierarchically porous) and discussed in detail. The influence of preparation parameters including hydrothermal time, temperature, pH of the reaction medium, solvent, and calcination temperature on physical, chemical, and optical properties of TiO2 is reviewed. Considering the complex interplay among catalyst properties, a special emphasis is placed on elucidating the interconnection between various photocatalyst features and their impacts on photocatalytic activity.

PMID: 30572234 [PubMed - indexed for MEDLINE]