Keyword search (3,448 papers available)


On the Impact of Biceps Muscle Fatigue in Human Activity Recognition.

Author(s): Elshafei M, Costa DE, Shihab E

Nowadays, Human Activity Recognition (HAR) systems, which use wearables and smart systems, are a part of our daily life. Despite the abundance of literature in the area, little is known about the impact of muscle fatigue on these systems' performance. I...

Article GUID: 33557239

Towards Detecting Biceps Muscle Fatigue in Gym Activity Using Wearables.

Author(s): Elshafei M, Shihab E

Fatigue is a naturally occurring phenomenon during human activities, but it poses a bigger risk for injuries during physically demanding activities, such as gym activities and athletics. Several studies show that bicep muscle fatigue can lead to various inj...

Article GUID: 33498702

Finite Element Modelling of Bandgap Engineered Graphene FET with the Application in Sensing Methanethiol Biomarker.

Author(s): Singh P, Abedini Sohi P, Kahrizi M

In this work, we have designed and simulated a graphene field effect transistor (GFET) with the purpose of developing a sensitive biosensor for methanethiol, a biomarker for bacterial infections. The surface of a graphene layer is functionalized by manipula...

Article GUID: 33467459

A Benchmark of Data Stream Classification for Human Activity Recognition on Connected Objects.

Author(s): Khannouz M; Glatard T;

This paper evaluates data stream classifiers from the perspective of connected devices, focusing on the use case of Human Activity Recognition. We measure both the classification performance and resource consumption (runtime, memory, and power) of five usua...

Article GUID: 33202905

Contactless Capacitive Electrocardiography Using Hybrid Flexible Printed Electrodes.

Author(s): Lessard-Tremblay M, Weeks J, Morelli L, Cowan G, Gagnon G, Zednik RJ

Traditional capacitive electrocardiogram (cECG) electrodes suffer from limited patient comfort, difficulty of disinfection and low signal-to-noise ratio in addition to the challenge of integrating them in wearables. A novel hybrid flexible cECG electrode wa...

Article GUID: 32927651

Determining the Optimal Restricted Driving Zone Using Genetic Algorithm in a Smart City.

Author(s): Azami P, Jan T, Iranmanesh S, Ameri Sianaki O, Hajiebrahimi S

Sensors (Basel). 2020 Apr 16;20(8): Authors: Azami P, Jan T, Iranmanesh S, Ameri Sianaki O, Hajiebrahimi S

Article GUID: 32316356

A Quantitative Comparison of Overlapping and Non-Overlapping Sliding Windows for Human Activity Recognition Using Inertial Sensors.

Author(s): Dehghani A, Sarbishei O, Glatard T, Shihab E

Sensors (Basel). 2019 Nov 18;19(22): Authors: Dehghani A, Sarbishei O, Glatard T, Shihab E

Article GUID: 31752158

Characterization and Efficient Management of Big Data in IoT-Driven Smart City Development.

Author(s): Alsaig A, Alagar V, Chammaa Z, Shiri N

Sensors (Basel). 2019 May 28;19(11): Authors: Alsaig A, Alagar V, Chammaa Z, Shiri N

Article GUID: 31141899

A Crowdsensing Based Analytical Framework for Perceptional Degradation of OTT Web Browsing.

Author(s): Li K, Wang H, Xu X, Du Y, Liu Y, Ahmad MO

Sensors (Basel). 2018 May 15;18(5): Authors: Li K, Wang H, Xu X, Du Y, Liu Y, Ahmad MO

Article GUID: 29762493

Fast Feature-Preserving Approach to Carpal Bone Surface Denoising.

Author(s): Salim I, Hamza AB

Sensors (Basel). 2018 Jul 21;18(7): Authors: Salim I, Hamza AB

Article GUID: 30037109

Big Data-Driven Cellular Information Detection and Coverage Identification.

Author(s): Wang H, Xie S, Li K, Ahmad MO

Sensors (Basel). 2019 Feb 22;19(4): Authors: Wang H, Xie S, Li K, Ahmad MO

Article GUID: 30813353

Surface Profiling and Core Evaluation of Aluminum Honeycomb Sandwich Aircraft Panels Using Multi-Frequency Eddy Current Testing.

Author(s): Reyno T, Underhill PR, Krause TW, Marsden C, Wowk D

Sensors (Basel). 2017 Sep 14;17(9): Authors: Reyno T, Underhill PR, Krause TW, Marsden C, Wowk D

Article GUID: 28906434


Title:Determining the Optimal Restricted Driving Zone Using Genetic Algorithm in a Smart City.
Authors:Azami PJan TIranmanesh SAmeri Sianaki OHajiebrahimi S
Link:https://www.ncbi.nlm.nih.gov/pubmed/32316356?dopt=Abstract
DOI:10.3390/s20082276
Category:Sensors (Basel)
PMID:32316356
Dept Affiliation: ENCS
1 Computer Science, Laurentian University, Sudbury, ON P3E 2C6, Canada.
2 School of IT and Engineering, Melbourne Institute of Technology, Sydney, NSW 2000, Australia.
3 Business School, Victoria University, Melbourne, VIC 3000, Australia.
4 Information Systems Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, QC H3G 1M8, Canada.

Description:

Determining the Optimal Restricted Driving Zone Using Genetic Algorithm in a Smart City.

Sensors (Basel). 2020 Apr 16;20(8):

Authors: Azami P, Jan T, Iranmanesh S, Ameri Sianaki O, Hajiebrahimi S

Abstract

Traffic control is one of the most challenging issues in metropolitan cities with growing populations and increased travel demands. Poor traffic control can result in traffic congestion and air pollution that can lead to health issues such as respiratory problems, asthma, allergies, anxiety, and stress. The traffic congestion can also result in travel delays and potential obstruction of emergency services. One of the most well-known traffic control methods is to restrict and control the access of private vehicles in predetermined regions of the city. The aim is to control the traffic load in order to maximize the citizen satisfaction given limited resources. The selection of restricted traffic regions remains a challenge because a large restricted area can reduce traffic load but with reduced citizen satisfaction as their mobility will be limited. On the other hand, a small restricted area may improve citizen satisfaction but with a reduced impact on traffic congestion or air pollution. The optimization of the restricted zone is a dynamic multi-regression problem that may require an intelligent trade-off. This paper proposes Optimal Restricted Driving Zone (ORDZ) using the Genetic Algorithm to select appropriate restricted traffic zones that can optimally control the traffic congestion and air pollution that will result in improved citizen satisfaction. ORDZ uses an augmented genetic algorithm and determinant theory to randomly generate different foursquare zones. This fitness function considers a trade-off between traffic load and citizen satisfaction. Our simulation studies show that ORDZ outperforms the current well-known methods in terms of a combined metric that considers the least traffic load and the most enhanced citizen satisfaction with over 30.6% improvements to some of the comparable methods.

PMID: 32316356 [PubMed - in process]