Keyword search (3,448 papers available)


On the Impact of Biceps Muscle Fatigue in Human Activity Recognition.

Author(s): Elshafei M, Costa DE, Shihab E

Nowadays, Human Activity Recognition (HAR) systems, which use wearables and smart systems, are a part of our daily life. Despite the abundance of literature in the area, little is known about the impact of muscle fatigue on these systems' performance. I...

Article GUID: 33557239

Towards Detecting Biceps Muscle Fatigue in Gym Activity Using Wearables.

Author(s): Elshafei M, Shihab E

Fatigue is a naturally occurring phenomenon during human activities, but it poses a bigger risk for injuries during physically demanding activities, such as gym activities and athletics. Several studies show that bicep muscle fatigue can lead to various inj...

Article GUID: 33498702

Finite Element Modelling of Bandgap Engineered Graphene FET with the Application in Sensing Methanethiol Biomarker.

Author(s): Singh P, Abedini Sohi P, Kahrizi M

In this work, we have designed and simulated a graphene field effect transistor (GFET) with the purpose of developing a sensitive biosensor for methanethiol, a biomarker for bacterial infections. The surface of a graphene layer is functionalized by manipula...

Article GUID: 33467459

A Benchmark of Data Stream Classification for Human Activity Recognition on Connected Objects.

Author(s): Khannouz M; Glatard T;

This paper evaluates data stream classifiers from the perspective of connected devices, focusing on the use case of Human Activity Recognition. We measure both the classification performance and resource consumption (runtime, memory, and power) of five usua...

Article GUID: 33202905

Contactless Capacitive Electrocardiography Using Hybrid Flexible Printed Electrodes.

Author(s): Lessard-Tremblay M, Weeks J, Morelli L, Cowan G, Gagnon G, Zednik RJ

Traditional capacitive electrocardiogram (cECG) electrodes suffer from limited patient comfort, difficulty of disinfection and low signal-to-noise ratio in addition to the challenge of integrating them in wearables. A novel hybrid flexible cECG electrode wa...

Article GUID: 32927651

Determining the Optimal Restricted Driving Zone Using Genetic Algorithm in a Smart City.

Author(s): Azami P, Jan T, Iranmanesh S, Ameri Sianaki O, Hajiebrahimi S

Sensors (Basel). 2020 Apr 16;20(8): Authors: Azami P, Jan T, Iranmanesh S, Ameri Sianaki O, Hajiebrahimi S

Article GUID: 32316356

A Quantitative Comparison of Overlapping and Non-Overlapping Sliding Windows for Human Activity Recognition Using Inertial Sensors.

Author(s): Dehghani A, Sarbishei O, Glatard T, Shihab E

Sensors (Basel). 2019 Nov 18;19(22): Authors: Dehghani A, Sarbishei O, Glatard T, Shihab E

Article GUID: 31752158

Characterization and Efficient Management of Big Data in IoT-Driven Smart City Development.

Author(s): Alsaig A, Alagar V, Chammaa Z, Shiri N

Sensors (Basel). 2019 May 28;19(11): Authors: Alsaig A, Alagar V, Chammaa Z, Shiri N

Article GUID: 31141899

A Crowdsensing Based Analytical Framework for Perceptional Degradation of OTT Web Browsing.

Author(s): Li K, Wang H, Xu X, Du Y, Liu Y, Ahmad MO

Sensors (Basel). 2018 May 15;18(5): Authors: Li K, Wang H, Xu X, Du Y, Liu Y, Ahmad MO

Article GUID: 29762493

Fast Feature-Preserving Approach to Carpal Bone Surface Denoising.

Author(s): Salim I, Hamza AB

Sensors (Basel). 2018 Jul 21;18(7): Authors: Salim I, Hamza AB

Article GUID: 30037109

Big Data-Driven Cellular Information Detection and Coverage Identification.

Author(s): Wang H, Xie S, Li K, Ahmad MO

Sensors (Basel). 2019 Feb 22;19(4): Authors: Wang H, Xie S, Li K, Ahmad MO

Article GUID: 30813353

Surface Profiling and Core Evaluation of Aluminum Honeycomb Sandwich Aircraft Panels Using Multi-Frequency Eddy Current Testing.

Author(s): Reyno T, Underhill PR, Krause TW, Marsden C, Wowk D

Sensors (Basel). 2017 Sep 14;17(9): Authors: Reyno T, Underhill PR, Krause TW, Marsden C, Wowk D

Article GUID: 28906434


Title:Contactless Capacitive Electrocardiography Using Hybrid Flexible Printed Electrodes.
Authors:Lessard-Tremblay MWeeks JMorelli LCowan GGagnon GZednik RJ
Link:https://www.ncbi.nlm.nih.gov/pubmed/32927651
DOI:10.3390/s20185156
Category:Sensors (Basel)
PMID:32927651
Dept Affiliation: ENCS
1 École de Technologie Supérieure (ÉTS), Université du Québec, Montréal, QC H3C 1K3, Canada.
2 SIG.NUM Preemptive Healthcare, Inc., Montréal, QC H3K 1G6, Canada.
3 Department of Electrical and Computer Engineering, Concordia University, Montréal, QC H3G 1M8, Canada.

Description:

Contactless Capacitive Electrocardiography Using Hybrid Flexible Printed Electrodes.

Sensors (Basel). 2020 Sep 10; 20(18):

Authors: Lessard-Tremblay M, Weeks J, Morelli L, Cowan G, Gagnon G, Zednik RJ

Abstract

Traditional capacitive electrocardiogram (cECG) electrodes suffer from limited patient comfort, difficulty of disinfection and low signal-to-noise ratio in addition to the challenge of integrating them in wearables. A novel hybrid flexible cECG electrode was developed that offers high versatility in the integration method, is well suited for large-scale manufacturing, is easy to disinfect in clinical settings and exhibits better performance over a comparable rigid contactless electrode. The novel flexible electrode meets the frequency requirement for clinically important QRS complex detection (0.67-5 Hz) and its performance is improved over rigid contactless electrode across all measured metrics as it maintains lower cut-off frequency, higher source capacitance and higher pass-band gain when characterized over a wide spectrum of patient morphologies. The results presented in this article suggest that the novel flexible electrode could be used in a medical device for cECG acquisition and medical diagnosis. The novel design proves also to be less sensitive to motion than a reference rigid electrode. We therefore anticipate it can represent an important step towards improving the repeatability of cECG methods while requiring less post-processing. This would help making cECG a viable method for remote cardiac health monitoring.

PMID: 32927651 [PubMed - in process]