Keyword search (3,448 papers available)


Sediment Metagenomes as Time Capsules of Lake Microbiomes.

Author(s): Garner RE; Gregory-Eaves I; Walsh DA;

The reconstruction of ecological time series from lake sediment archives can retrace the environmental impact of human activities. Molecular genetic approaches in paleolimnology have provided unprecedented access to DNA time series, which record evidence of...

Article GUID: 33148818

Modelling Free-Living and Particle-Associated Bacterial Assemblages across the Deep and Hypoxic Lower St. Lawrence Estuary.

Author(s): Cui TT, Dawson TJ, McLatchie S, Dunn K, Bielawski J, Walsh DA

mSphere. 2020 May 20;5(3): Authors: Cui TT, Dawson TJ, McLatchie S, Dunn K, Bielawski J, Walsh DA

Article GUID: 32434843

Functional Characterization of Clinical Isolates of the Opportunistic Fungal Pathogen Aspergillus nidulans.

Author(s): Bastos RW, Valero C, Silva LP, Schoen T, Drott M, Brauer V, Silva-Rocha R, Lind A, Steenwyk JL, Rokas A, Rodrigues F, Resendiz-Sharpe A, Lag...

mSphere. 2020 Apr 08;5(2): Authors: Bastos RW, Valero C, Silva LP, Schoen T, Drott M, Brauer V, Silva-Rocha R, Lind A, Steenwyk JL, Rokas A, Rodrigues F, Resendiz-Sharpe A, Lagrou K, Marcet-Houben...

Article GUID: 32269156

Nucleotide Excision Repair Protein Rad23 Regulates Cell Virulence Independent of Rad4 in Candida albicans.

Author(s): Feng J, Yao S, Dong Y, Hu J, Whiteway M, Feng J

mSphere. 2020 Feb 19;5(1): Authors: Feng J, Yao S, Dong Y, Hu J, Whiteway M, Feng J

Article GUID: 32075883

The Genomic Landscape of the Fungus-Specific SWI/SNF Complex Subunit, Snf6, in Candida albicans.

Author(s): Tebbji F, Chen Y, Sellam A, Whiteway M

mSphere. 2017 Nov-Dec;2(6): Authors: Tebbji F, Chen Y, Sellam A, Whiteway M

Article GUID: 29152582

MAP Kinase Regulation of the Candida albicans Pheromone Pathway.

Author(s): Rastghalam G, Omran RP, Alizadeh M, Fulton D, Mallick J, Whiteway M

mSphere. 2019 02 20;4(1): Authors: Rastghalam G, Omran RP, Alizadeh M, Fulton D, Mallick J, Whiteway M

Article GUID: 30787119

Put3 Positively Regulates Proline Utilization in Candida albicans.

Author(s): Tebung WA, Omran RP, Fulton DL, Morschhäuser J, Whiteway M

mSphere. 2017 Nov-Dec;2(6): Authors: Tebung WA, Omran RP, Fulton DL, Morschhäuser J, Whiteway M

Article GUID: 29242833


Title:Sediment Metagenomes as Time Capsules of Lake Microbiomes.
Authors:Garner REGregory-Eaves IWalsh DA
Link:https://www.ncbi.nlm.nih.gov/pubmed/33148818
DOI:10.1128/mSphere.00512-20
Category:mSphere
PMID:33148818
Dept Affiliation: BIOLOGY
1 Department of Biology, Concordia University, Montreal, Quebec, Canada.
2 Groupe de Recherche Interuniversitaire en Limnologie, Montreal, Quebec, Canada.
3 Department of Biology, McGill University, Montreal, Quebec, Canada.
4 Department of Biology, Concordia University, Montreal, Quebec, Canada david.walsh@concordia.ca.

Description:

The reconstruction of ecological time series from lake sediment archives can retrace the environmental impact of human activities. Molecular genetic approaches in paleolimnology have provided unprecedented access to DNA time series, which record evidence of the microbial ecologies that underlaid historical lake ecosystems. Such studies often rely on single-gene surveys, and consequently, the full diversity of preserved microorganisms remains unexplored. In this study, we probed the diversity archived in contemporary and preindustrial sediments by comparative shotgun metagenomic analysis of surface water and sediment samples from three eastern Canadian lakes. In a strategy that was aimed at disentangling historical DNA from the indigenous sediment background, microbial preservation signals were captured by mapping sequence similarities between sediment metagenome reads and reference surface water metagenome assemblies. We detected preserved Cyanobacteria, diverse bacterioplankton, microeukaryotes, and viruses in sediment metagenomes. Among the preserved microorganisms were important groups never before reported in paleolimnological reconstructions, including bacteriophages (Caudovirales) and ubiquitous freshwater Betaproteobacteria (Polynucleobacter and Limnohabitans). In contrast, ultramicroscopic Actinobacteria ("Candidatus Nanopelagicales") and Alphaproteobacteria (Pelagibacterales) were apparently not well preserved in sediment metagenomes even though they were numerically dominant in surface water metagenomes. Overall, our study explored a novel application of whole-metagenome shotgun sequencing for discovering the DNA remains of a broad diversity of microorganisms preserved in lake sediments. The recovery of diverse microbial time series supports the taxonomic expansion of microbiome reconstructions and the development of novel microbial paleoindicators.IMPORTANCE Lakes are critical freshwater resources under mounting pressure from climate change and other anthropogenic stressors. The reconstruction of ecological time series from sediment archives with paleolimnological techniques has been shown to be an effective means of understanding how humans are modifying lake ecosystems over extended timescales. In this study, we combined shotgun DNA sequencing with a novel comparative analysis of surface water and sediment metagenomes to expose the diversity of microorganisms preserved in lake sediments. The detection of DNA from a broad diversity of preserved microbes serves to more fully reconstruct historical microbiomes and describe preimpact lake conditions.

PMID: 33148818 [PubMed - in process]