Keyword search (3,619 papers available)


The eIF2α Kinase GCN2 Modulates Period and Rhythmicity of the Circadian Clock by Translational Control of Atf4.

Author(s): Pathak SS, Liu D, Li T, de Zavalia N, Zhu L, Li J, Karthikeyan R, Alain T, Liu AC, Storch KF, Kaufman RJ, Jin VX, Amir S, Sonenberg N, Cao R

Neuron. 2019 Aug 26;: Authors: Pathak SS, Liu D, Li T, de Zavalia N, Zhu L, Li J, Karthikeyan R, Alain T, Liu AC, Storch KF, Kaufman RJ, Jin VX, Amir S, Sonenberg N, Cao R

Article GUID: 31522764

Effects of bilateral anterior agranular insula lesions on food anticipatory activity in rats.

Author(s): Gavrila AM, Hood S, Robinson B, Amir S

PLoS One. 2017;12(6):e0179370 Authors: Gavrila AM, Hood S, Robinson B, Amir S

Article GUID: 28594962

Circadian Rhythms in Regulation of Brain Processes and Role in Psychiatric Disorders.

Author(s): Pantazopoulos H, Gamble K, Stork O, Amir S

Neural Plast. 2018;2018:5892657 Authors: Pantazopoulos H, Gamble K, Stork O, Amir S PMID: 29887881 [PubMed - indexed for MEDLINE]

Article GUID: 29887881

Mapping the co-localization of the circadian proteins PER2 and BMAL1 with enkephalin and substance P throughout the rodent forebrain.

Author(s): Frederick A, Goldsmith J, de Zavalia N, Amir S

PLoS One. 2017;12(4):e0176279 Authors: Frederick A, Goldsmith J, de Zavalia N, Amir S

Article GUID: 28423013

Comprehensive mapping of regional expression of the clock protein PERIOD2 in rat forebrain across the 24-h day.

Author(s): Harbour VL, Weigl Y, Robinson B, Amir S

PLoS One. 2013;8(10):e76391 Authors: Harbour VL, Weigl Y, Robinson B, Amir S

Article GUID: 24124556

Phase differences in expression of circadian clock genes in the central nucleus of the amygdala, dentate gyrus, and suprachiasmatic nucleus in the rat.

Author(s): Harbour VL, Weigl Y, Robinson B, Amir S

PLoS One. 2014;9(7):e103309 Authors: Harbour VL, Weigl Y, Robinson B, Amir S

Article GUID: 25068868

Diurnal influences on electrophysiological oscillations and coupling in the dorsal striatum and cerebellar cortex of the anesthetized rat.

Author(s): Frederick A, Bourget-Murray J, Chapman CA, Amir S, Courtemanche R

Front Syst Neurosci. 2014;8:145 Authors: Frederick A, Bourget-Murray J, Chapman CA, Amir S, Courtemanche R

Article GUID: 25309348

Stress-induced changes in the expression of the clock protein PERIOD1 in the rat limbic forebrain and hypothalamus: role of stress type, time of day, and predictability.

Author(s): Al-Safadi S, Al-Safadi A, Branchaud M, Rutherford S, Dayanandan A, Robinson B, Amir S

PLoS One. 2014;9(10):e111166 Authors: Al-Safadi S, Al-Safadi A, Branchaud M, Rutherford S, Dayanandan A, Robinson B, Amir S

Article GUID: 25338089

Light-regulated translational control of circadian behavior by eIF4E phosphorylation.

Author(s): Cao R, Gkogkas CG, de Zavalia N, Blum ID, Yanagiya A, Tsukumo Y, Xu H, Lee C, Storch KF, Liu AC, Amir S, Sonenberg N

Nat Neurosci. 2015 Jun;18(6):855-62 Authors: Cao R, Gkogkas CG, de Zavalia N, Blum ID, Yanagiya A, Tsukumo Y, Xu H, Lee C, Storch KF, Liu AC, Amir S, Sonenberg N

Article GUID: 25915475

Glucocorticoids and Stress-Induced Changes in the Expression of PERIOD1 in the Rat Forebrain.

Author(s): Al-Safadi S, Branchaud M, Rutherford S, Amir S

PLoS One. 2015;10(6):e0130085 Authors: Al-Safadi S, Branchaud M, Rutherford S, Amir S

Article GUID: 26075608

Circadian Rhythms and Psychopathology: From Models of Depression to Rhythms in Clock Gene Expression and Back Again.

Author(s): Verwey M, Al-Safadi S, Amir S

Biol Psychiatry. 2015 Aug 15;78(4):220-1 Authors: Verwey M, Al-Safadi S, Amir S PMID: 26195175 [PubMed - indexed for MEDLINE]

Article GUID: 26195175

From genes to chronotypes: the influence of circadian clock genes on our daily patterns of sleep and wakefulness.

Author(s): Verwey M, Amir S

Ann Transl Med. 2016 May;4(9):184 Authors: Verwey M, Amir S PMID: 27275497 [PubMed]

Article GUID: 27275497

Exploring the role of locomotor sensitization in the circadian food entrainment pathway.

Author(s): Opiol H, de Zavalia N, Delorme T, Solis P, Rutherford S, Shalev U, Amir S

PLoS One. 2017;12(3):e0174113 Authors: Opiol H, de Zavalia N, Delorme T, Solis P, Rutherford S, Shalev U, Amir S

Article GUID: 28301599

Individual differences in circadian locomotor parameters correlate with anxiety- and depression-like behavior.

Author(s): Anyan J, Verwey M, Amir S

PLoS One. 2017;12(8):e0181375 Authors: Anyan J, Verwey M, Amir S

Article GUID: 28763478

Too Depressed to Swim or Too Afraid to Stop? A Reinterpretation of the Forced Swim Test as a Measure of Anxiety-Like Behavior.

Author(s): Anyan J, Amir S

Neuropsychopharmacology. 2018 04;43(5):931-933 Authors: Anyan J, Amir S PMID: 29210364 [PubMed - in process]

Article GUID: 29210364


Title:Effects of bilateral anterior agranular insula lesions on food anticipatory activity in rats.
Authors:Gavrila AMHood SRobinson BAmir S
Link:https://www.ncbi.nlm.nih.gov/pubmed/28594962?dopt=Abstract
DOI:10.1371/journal.pone.0179370
Category:PLoS One
PMID:28594962
Dept Affiliation: CSBN
1 Department of Psychology, Center for Studies in Behavioural Neurobiology/FRSQ Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, Quebec, Canada.
2 Department of Psychology, Bishop's University, Sherbrooke, Quebec, Canada.

Description:

Effects of bilateral anterior agranular insula lesions on food anticipatory activity in rats.

PLoS One. 2017;12(6):e0179370

Authors: Gavrila AM, Hood S, Robinson B, Amir S

Abstract

Food anticipatory activity (FAA) refers to a daily rhythm of locomotor activity that emerges under conditions of food restriction, whereby animals develop an intense, predictable period of activity in the few hours leading up to a predictable, daily delivery of food. The neural mechanisms by which FAA is regulated are not yet fully understood. Although a number of brain regions appear to be involved in regulating the development and expression of FAA, there is little evidence to date concerning the role of the anterior agranular insular cortex (AICa). The AICa plays a critical role in integrating the perception of visceral states with motivational behaviour such as feeding. We assessed the effect of bilateral electrolytic or ibotenic acid lesions of the AICa on FAA in male Wistar rats receiving food for varying lengths of time (2 h, 3 h, or 5 h) during the middle of the light phase (starting at either ZT4 or ZT6). Contrary to our initial expectations, we found that both electrolytic and ibotenic acid lesions significantly increased, rather than decreased, the amount of FAA expressed in lesioned rats. Despite increased FAA, lesioned rats did not eat significantly more during restricted feeding (RF) periods than control rats. Similar to controls, AlCa-lesioned rats showed negligible anticipatory activity to a restricted treat suggesting that the increased anticipatory activity in lesioned rats is associated with food restriction, rather than the appetitive value of the meal. Monitoring behaviour in an open field indicated that increased FAA in AlCa-lesioned rats was not explained by a general increase in locomotor activity. Together, these findings suggest that the AICa contributes to the network of brain regions involved in FAA.

PMID: 28594962 [PubMed - indexed for MEDLINE]