Keyword search (3,619 papers available)


Sublethal Paraquat Confers Multidrug Tolerance in Pseudomonas aeruginosa by Inducing Superoxide Dismutase Activity and Lowering Envelope Permeability.

Author(s): Martins D, McKay GA, English AM, Nguyen D

Stressors and environmental cues shape the physiological state of bacteria, and thus how they subsequently respond to antibiotic toxicity. To understand how superoxide stress can modulate survival to bactericidal antibiotics, we examined the effect of intra...

Article GUID: 33101252

Ctt1 catalase activity potentiates antifungal azoles in the emerging opportunistic pathogen Saccharomyces cerevisiae.

Author(s): Martins D, Nguyen D, English AM

Sci Rep. 2019 Jun 24;9(1):9185 Authors: Martins D, Nguyen D, English AM

Article GUID: 31235707

Derivatization of yeast cytochrome c peroxidase with pentaammineruthenium(III).

Author(s): Fox T, English AM, Gibbs BF

Derivatization of yeast cytochrome c peroxidase with pentaammineruthenium(III).
Bioconjug Chem. 1994 Jan-Feb;5(1):14-20
Authors: Fox T, English AM, Gibbs BF
Abstract
Cytochrome c peroxidase (CCP) was derivatized using aquopentaamminerutheniu...

Article GUID: 8199229

Mass spectral analysis of protein-based radicals using DBNBS. Nonradical adduct formation versus spin trapping.

Author(s): Filosa A, English AM

J Biol Chem. 2001 Jun 15;276(24):21022-7 Authors: Filosa A, English AM

Article GUID: 11262405

Heme nitrosylation of deoxyhemoglobin by s-nitrosoglutathione requires copper.

Author(s): Romeo AA, Capobianco JA, English AM

J Biol Chem. 2002 Jul 05;277(27):24135-41 Authors: Romeo AA, Capobianco JA, English AM

Article GUID: 11970954

S-nitrosation of Ca(2+)-loaded and Ca(2+)-free recombinant calbindin D(28K) from human brain.

Author(s): Tao L, Murphy ME, English AM

Biochemistry. 2002 May 14;41(19):6185-92 Authors: Tao L, Murphy ME, English AM

Article GUID: 11994015

Different pathways of radical translocation in yeast cytochrome c peroxidase and its W191F mutant on reaction with H(2)O(2) suggest an antioxidant role.

Author(s): Tsaprailis G, English AM

J Biol Inorg Chem. 2003 Feb;8(3):248-55 Authors: Tsaprailis G, English AM

Article GUID: 12589560

Mechanism of S-nitrosation of recombinant human brain calbindin D28K.

Author(s): Tao L, English AM

Biochemistry. 2003 Mar 25;42(11):3326-34 Authors: Tao L, English AM

Article GUID: 12641465

Quantitative analysis of the yeast proteome by incorporation of isotopically labeled leucine.

Author(s): Jiang H, English AM

J Proteome Res. 2002 Jul-Aug;1(4):345-50 Authors: Jiang H, English AM

Article GUID: 12645890

Scavenging with TEMPO* to identify peptide- and protein-based radicals by mass spectrometry: advantages of spin scavenging over spin trapping.

Author(s): Wright PJ, English AM

J Am Chem Soc. 2003 Jul 16;125(28):8655-65 Authors: Wright PJ, English AM

Article GUID: 12848573

ESI-MS and FTIR studies of the interaction between the second PDZ domain of hPTP1E and target peptides.

Author(s): Papp R, Ekiel I, English AM

Biochem Cell Biol. 2003 Apr;81(2):71-80 Authors: Papp R, Ekiel I, English AM

Article GUID: 12870871

Superoxide dismutase targets NO from GSNO to Cysbeta93 of oxyhemoglobin in concentrated but not dilute solutions of the protein.

Author(s): Romeo AA, Capobianco JA, English AM

J Am Chem Soc. 2003 Nov 26;125(47):14370-8 Authors: Romeo AA, Capobianco JA, English AM

Article GUID: 14624585

Protein S-glutathiolation triggered by decomposed S-nitrosoglutathione.

Author(s): Tao L, English AM

Biochemistry. 2004 Apr 06;43(13):4028-38 Authors: Tao L, English AM

Article GUID: 15049710

Mass spectrometric analysis of nitroxyl-mediated protein modification: comparison of products formed with free and protein-based cysteines.

Author(s): Shen B, English AM

Biochemistry. 2005 Oct 25;44(42):14030-44 Authors: Shen B, English AM

Article GUID: 16229492

Hemoglobin S-nitrosation on oxygenation of nitrite/deoxyhemoglobin incubations is attenuated by methemoglobin.

Author(s): Laterreur J, English AM

J Inorg Biochem. 2007 Nov;101(11-12):1827-35 Authors: Laterreur J, English AM

Article GUID: 17889368

ESI-MS quantitation of iron as its 4-(2-pyridylazo)resorcinol (PAR) complex: application to pharmaceutical tablets containing iron oxide pigment.

Author(s): Susanto D, English AM, Sharma R, Kwong E

J Mass Spectrom. 2011 May;46(5):508-16 Authors: Susanto D, English AM, Sharma R, Kwong E

Article GUID: 21520348

SOD1 oxidation and formation of soluble aggregates in yeast: relevance to sporadic ALS development.

Author(s): Martins D, English AM

Redox Biol. 2014;2:632-9 Authors: Martins D, English AM

Article GUID: 24936435

Targeted proteomics identify metabolism-dependent interactors of yeast cytochrome c peroxidase: implications in stress response and heme trafficking.

Author(s): Kathiresan M, English AM

Metallomics. 2016 Apr;8(4):434-43 Authors: Kathiresan M, English AM

Article GUID: 26980054

LC-MS/MS suggests that hole hopping in cytochrome c peroxidase protects its heme from oxidative modification by excess H2O2.

Author(s): Kathiresan M, English AM

Chem Sci. 2017 Feb 01;8(2):1152-1162 Authors: Kathiresan M, English AM

Article GUID: 28451256

Superoxide dismutase activity confers (p)ppGpp-mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosa.

Author(s): Martins D, McKay G, Sampathkumar G, Khakimova M, English AM, Nguyen D

Proc Natl Acad Sci U S A. 2018 09 25;115(39):9797-9802 Authors: Martins D, McKay G, Sampathkumar G, Khakimova M, English AM, Nguyen D

Article GUID: 30201715


Title:SOD1 oxidation and formation of soluble aggregates in yeast: relevance to sporadic ALS development.
Authors:Martins DEnglish AM
Link:https://www.ncbi.nlm.nih.gov/pubmed/24936435?dopt=Abstract
DOI:10.1016/j.redox.2014.03.005
Category:Redox Biol
PMID:24936435
Dept Affiliation: CHEMBIOCHEM
1 Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke West, Montreal, Quebec, Canada H4B 1R6.

Description:

SOD1 oxidation and formation of soluble aggregates in yeast: relevance to sporadic ALS development.

Redox Biol. 2014;2:632-9

Authors: Martins D, English AM

Abstract

Misfolding and aggregation of copper-zinc superoxide dismutase (Sod1) are observed in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Mutations in Sod1 lead to familial ALS (FALS), which is a late-onset disease. Since oxidative damage to proteins increases with age, it had been proposed that oxidation of Sod1 mutants may trigger their misfolding and aggregation in FALS. However, over 90% of ALS cases are sporadic (SALS) with no obvious genetic component. We hypothesized that oxidation could also trigger the misfolding and aggregation of wild-type Sod1 and sought to confirm this in a cellular environment. Using quiescent, stationary-phase yeast cells as a model for non-dividing motor neurons, we probed for post-translational modification (PTM) and aggregation of wild-type Sod1 extracted from these cells. By size-exclusion chromatography (SEC), we isolated two populations of Sod1 from yeast: a low-molecular weight (LMW) fraction that is catalytically active and a catalytically inactive, high-molecular weight (HMW) fraction. High-resolution mass spectrometric analysis revealed that LMW Sod1 displays no PTMs but HMW Sod1 is oxidized at Cys146 and His71, two critical residues for the stability and folding of the enzyme. HMW Sod1 is also oxidized at His120, a copper ligand, which will promote loss of this catalytic metal cofactor essential for SOD activity. Monitoring the fluorescence of a Sod1-green-fluorescent-protein fusion (Sod1-GFP) extracted from yeast chromosomally expressing this fusion, we find that HMW Sod1-GFP levels increase up to 40-fold in old cells. Thus, we speculate that increased misfolding and inclusion into soluble aggregates is a consequence of elevated oxidative modifications of wild-type Sod1 as cells age. Our observations argue that oxidative damage to wild-type Sod1 initiates the protein misfolding mechanisms that give rise to SALS.

PMID: 24936435 [PubMed - indexed for MEDLINE]