Keyword search (3,166 papers available)


Effects of Independent Component Analysis on Magnetoencephalography Source Localization in Pre-surgical Frontal Lobe Epilepsy Patients

Author(s): Pellegrino G, Xu M, Alkuwaiti A, Porras-Bettancourt M, Abbas G, Lina JM, Grova C, Kobayashi E,...

Objective: Magnetoencephalography source imaging (MSI) of interictal epileptiform discharges (IED) is a useful presurgical tool in the evaluation of drug-resistant frontal lobe epilepsy (FLE) patie...

Article GUID: 32582009

Accuracy and spatial properties of distributed magnetic source imaging techniques in the investigation of focal epilepsy patients.

Author(s): Pellegrino G, Hedrich T, Porras-Bettancourt M, Lina JM, Aydin Ü, Hall J, Grova C, Kobayashi E

Hum Brain Mapp. 2020 May 09;: Authors: Pellegrino G, Hedrich T, Porras-Bettancourt M, Lina JM, Aydin Ü, Hall J, Grova C, Kobayashi E

Article GUID: 32386115

Magnetoencephalography resting state connectivity patterns as indicatives of surgical outcome in epilepsy patients.

Author(s): Aydin Ü, Pellegrino G, Bin Ka'b Ali O, Abdallah C, Dubeau F, Lina JM, Kobayashi E, Grova C

J Neural Eng. 2020 Mar 18;: Authors: Aydin Ü, Pellegrino G, Bin Ka'b Ali O, Abdallah C, Dubeau F, Lina JM, Kobayashi E, Grova C

Article GUID: 32191632

Differences in MEG and EEG power-law scaling explained by a coupling between spatial coherence and frequency: a simulation study.

Author(s): Bénar CG, Grova C, Jirsa VK, Lina JM

J Comput Neurosci. 2019 Jul 11;: Authors: Bénar CG, Grova C, Jirsa VK, Lina JM

Article GUID: 31292816

Localization Accuracy of Distributed Inverse Solutions for Electric and Magnetic Source Imaging of Interictal Epileptic Discharges in Patients with Focal Epilepsy.

Author(s): Heers M, Chowdhury RA, Hedrich T, Dubeau F, Hall JA, Lina JM, Grova C, Kobayashi E

Brain Topogr. 2016 Jan;29(1):162-81 Authors: Heers M, Chowdhury RA, Hedrich T, Dubeau F, Hall JA, Lina JM, Grova C, Kobayashi E

Article GUID: 25609211

MEG-EEG Information Fusion and Electromagnetic Source Imaging: From Theory to Clinical Application in Epilepsy.

Author(s): Chowdhury RA, Zerouali Y, Hedrich T, Heers M, Kobayashi E, Lina JM, Grova C

Brain Topogr. 2015 Nov;28(6):785-812 Authors: Chowdhury RA, Zerouali Y, Hedrich T, Heers M, Kobayashi E, Lina JM, Grova C

Article GUID: 26016950

Detection and Magnetic Source Imaging of Fast Oscillations (40-160 Hz) Recorded with Magnetoencephalography in Focal Epilepsy Patients.

Author(s): von Ellenrieder N, Pellegrino G, Hedrich T, Gotman J, Lina JM, Grova C, Kobayashi E

Brain Topogr. 2016 Mar;29(2):218-31 Authors: von Ellenrieder N, Pellegrino G, Hedrich T, Gotman J, Lina JM, Grova C, Kobayashi E

Article GUID: 26830767

Intracranial EEG potentials estimated from MEG sources: A new approach to correlate MEG and iEEG data in epilepsy.

Author(s): Grova C, Aiguabella M, Zelmann R, Lina JM, Hall JA, Kobayashi E

Hum Brain Mapp. 2016 May;37(5):1661-83 Authors: Grova C, Aiguabella M, Zelmann R, Lina JM, Hall JA, Kobayashi E

Article GUID: 26931511

SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.

Author(s): Lee K, Lina JM, Gotman J, Grova C

Neuroimage. 2016 07 01;134:434-449 Authors: Lee K, Lina JM, Gotman J, Grova C

Article GUID: 27046111

Source localization of the seizure onset zone from ictal EEG/MEG data.

Author(s): Pellegrino G, Hedrich T, Chowdhury R, Hall JA, Lina JM, Dubeau F, Kobayashi E, Grova C

Hum Brain Mapp. 2016 07;37(7):2528-46 Authors: Pellegrino G, Hedrich T, Chowdhury R, Hall JA, Lina JM, Dubeau F, Kobayashi E, Grova C

Article GUID: 27059157

Clinical yield of magnetoencephalography distributed source imaging in epilepsy: A comparison with equivalent current dipole method.

Author(s): Pellegrino G, Hedrich T, Chowdhury RA, Hall JA, Dubeau F, Lina JM, Kobayashi E, Grova C

Hum Brain Mapp. 2018 01;39(1):218-231 Authors: Pellegrino G, Hedrich T, Chowdhury RA, Hall JA, Dubeau F, Lina JM, Kobayashi E, Grova C

Article GUID: 29024165

Reproducibility of EEG-MEG fusion source analysis of interictal spikes: Relevance in presurgical evaluation of epilepsy.

Author(s): Chowdhury RA, Pellegrino G, Aydin Ü, Lina JM, Dubeau F, Kobayashi E, Grova C

Hum Brain Mapp. 2018 02;39(2):880-901 Authors: Chowdhury RA, Pellegrino G, Aydin Ü, Lina JM, Dubeau F, Kobayashi E, Grova C

Article GUID: 29164737

Disruption, emergence and lateralization of brain network hubs in mesial temporal lobe epilepsy.

Author(s): Lee K, Khoo HM, Lina JM, Dubeau F, Gotman J, Grova C

Neuroimage Clin. 2018;20:71-84 Authors: Lee K, Khoo HM, Lina JM, Dubeau F, Gotman J, Grova C

Article GUID: 30094158

Optimal positioning of optodes on the scalp for personalized functional near-infrared spectroscopy investigations.

Author(s): Machado A, Cai Z, Pellegrino G, Marcotte O, Vincent T, Lina JM, Kobayashi E, Grova C

J Neurosci Methods. 2018 Nov 01;309:91-108 Authors: Machado A, Cai Z, Pellegrino G, Marcotte O, Vincent T, Lina JM, Kobayashi E, Grova C

Article GUID: 30107210

Complex patterns of spatially extended generators of epileptic activity: Comparison of source localization methods cMEM and 4-ExSo-MUSIC on high resolution EEG and MEG data.

Author(s): Chowdhury RA, Merlet I, Birot G, Kobayashi E, Nica A, Biraben A, Wendling F, Lina JM, Albera L, Grova C...

Complex patterns of spatially extended generators of epileptic activity: Comparison of source localization methods cMEM and 4-ExSo-MUSIC on high resolution EEG and MEG data.

Neuroimage. 2...

Article GUID: 27561712

Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG.

Author(s): Hedrich T, Pellegrino G, Kobayashi E, Lina JM, Grova C

Neuroimage. 2017 08 15;157:531-544 Authors: Hedrich T, Pellegrino G, Kobayashi E, Lina JM, Grova C

Article GUID: 28619655

Beyond spindles: interactions between sleep spindles and boundary frequencies during cued reactivation of motor memory representations.

Author(s): Laventure S, Pinsard B, Lungu O, Carrier J, Fogel S, Benali H, Lina JM, Boutin A, Doyon J

Sleep. 2018 Sep 01;41(9): Authors: Laventure S, Pinsard B, Lungu O, Carrier J, Fogel S, Benali H, Lina JM, Boutin A, Doyon J

Article GUID: 30137521


Title:Beyond spindles: interactions between sleep spindles and boundary frequencies during cued reactivation of motor memory representations.
Authors:Laventure SPinsard BLungu OCarrier JFogel SBenali HLina JMBoutin ADoyon J
Link:https://www.ncbi.nlm.nih.gov/pubmed/30137521?dopt=Abstract
Category:Sleep
PMID:30137521
Dept Affiliation: PERFORM
1 Department of Psychology, University of Montreal, Montreal, QC, Canada.
2 Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, QC, Canada.
3 McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
4 Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), 75013 Paris, France.
5 Center for Advanced Research in Sleep Medicine, Montreal, QC, Canada.
6 School of Psychology, University of Ottawa, Ottawa, Ontario, Canada.
7 University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada.
8 University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
9 PERFORM Centre, Electrical and Computer Engineering Department, Concordia University, Montreal, Canada.
10 École de technologie supérieure, Department of Electrical Engineering, Montreal, Canada.

Description:

Beyond spindles: interactions between sleep spindles and boundary frequencies during cued reactivation of motor memory representations.

Sleep. 2018 Sep 01;41(9):

Authors: Laventure S, Pinsard B, Lungu O, Carrier J, Fogel S, Benali H, Lina JM, Boutin A, Doyon J

Abstract

There is now ample evidence that sleep spindles play a critical role in the consolidation of newly acquired motor sequences. Previous studies have also revealed that the interplay between different types of sleep oscillations (e.g. spindles, slow waves, sharp-wave ripples) promotes the consolidation process of declarative memories. Yet the functional contribution of this type of frequency-specific interactions to motor memory consolidation remains unknown. Thus, this study sought to investigate whether spindle oscillations are associated with low- or high-frequency activity at the regional (local) and interregional (connectivity) levels. Using an olfactory-targeted memory reactivation paradigm paired to a motor sequence learning task, we compared the effect of cuing (Cond) to no-cuing (NoCond) on frequency interactions during sleep spindles. Time-frequency decomposition analyses revealed that cuing induced significant differential and localized changes in delta (1-4 Hz) and theta (4-8 Hz) frequencies before, during, and after spindles, as well as changes in high-beta (20-30 Hz) during the spindle oscillation. Finally, coherence analyses yielded significant increases in connectivity during sleep spindles in both theta and sigma (11-17 Hz) bands in the cued group only. These results support the notion that the synchrony between spindle and associated low- or high-frequency rhythmic activity is an integral part of the memory reactivation process. Furthermore, they highlight the importance of not only measuring spindles' characteristics, but to investigate such oscillations in both time and frequency domains when assessing memory consolidation-related changes.

PMID: 30137521 [PubMed - in process]