Keyword search (3,166 papers available)


Effects of Independent Component Analysis on Magnetoencephalography Source Localization in Pre-surgical Frontal Lobe Epilepsy Patients

Author(s): Pellegrino G, Xu M, Alkuwaiti A, Porras-Bettancourt M, Abbas G, Lina JM, Grova C, Kobayashi E,...

Objective: Magnetoencephalography source imaging (MSI) of interictal epileptiform discharges (IED) is a useful presurgical tool in the evaluation of drug-resistant frontal lobe epilepsy (FLE) patie...

Article GUID: 32582009

Accuracy and spatial properties of distributed magnetic source imaging techniques in the investigation of focal epilepsy patients.

Author(s): Pellegrino G, Hedrich T, Porras-Bettancourt M, Lina JM, Aydin Ü, Hall J, Grova C, Kobayashi E

Hum Brain Mapp. 2020 May 09;: Authors: Pellegrino G, Hedrich T, Porras-Bettancourt M, Lina JM, Aydin Ü, Hall J, Grova C, Kobayashi E

Article GUID: 32386115

Magnetoencephalography resting state connectivity patterns as indicatives of surgical outcome in epilepsy patients.

Author(s): Aydin Ü, Pellegrino G, Bin Ka'b Ali O, Abdallah C, Dubeau F, Lina JM, Kobayashi E, Grova C

J Neural Eng. 2020 Mar 18;: Authors: Aydin Ü, Pellegrino G, Bin Ka'b Ali O, Abdallah C, Dubeau F, Lina JM, Kobayashi E, Grova C

Article GUID: 32191632

Differences in MEG and EEG power-law scaling explained by a coupling between spatial coherence and frequency: a simulation study.

Author(s): Bénar CG, Grova C, Jirsa VK, Lina JM

J Comput Neurosci. 2019 Jul 11;: Authors: Bénar CG, Grova C, Jirsa VK, Lina JM

Article GUID: 31292816

Localization Accuracy of Distributed Inverse Solutions for Electric and Magnetic Source Imaging of Interictal Epileptic Discharges in Patients with Focal Epilepsy.

Author(s): Heers M, Chowdhury RA, Hedrich T, Dubeau F, Hall JA, Lina JM, Grova C, Kobayashi E

Brain Topogr. 2016 Jan;29(1):162-81 Authors: Heers M, Chowdhury RA, Hedrich T, Dubeau F, Hall JA, Lina JM, Grova C, Kobayashi E

Article GUID: 25609211

MEG-EEG Information Fusion and Electromagnetic Source Imaging: From Theory to Clinical Application in Epilepsy.

Author(s): Chowdhury RA, Zerouali Y, Hedrich T, Heers M, Kobayashi E, Lina JM, Grova C

Brain Topogr. 2015 Nov;28(6):785-812 Authors: Chowdhury RA, Zerouali Y, Hedrich T, Heers M, Kobayashi E, Lina JM, Grova C

Article GUID: 26016950

Detection and Magnetic Source Imaging of Fast Oscillations (40-160 Hz) Recorded with Magnetoencephalography in Focal Epilepsy Patients.

Author(s): von Ellenrieder N, Pellegrino G, Hedrich T, Gotman J, Lina JM, Grova C, Kobayashi E

Brain Topogr. 2016 Mar;29(2):218-31 Authors: von Ellenrieder N, Pellegrino G, Hedrich T, Gotman J, Lina JM, Grova C, Kobayashi E

Article GUID: 26830767

Intracranial EEG potentials estimated from MEG sources: A new approach to correlate MEG and iEEG data in epilepsy.

Author(s): Grova C, Aiguabella M, Zelmann R, Lina JM, Hall JA, Kobayashi E

Hum Brain Mapp. 2016 May;37(5):1661-83 Authors: Grova C, Aiguabella M, Zelmann R, Lina JM, Hall JA, Kobayashi E

Article GUID: 26931511

SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.

Author(s): Lee K, Lina JM, Gotman J, Grova C

Neuroimage. 2016 07 01;134:434-449 Authors: Lee K, Lina JM, Gotman J, Grova C

Article GUID: 27046111

Source localization of the seizure onset zone from ictal EEG/MEG data.

Author(s): Pellegrino G, Hedrich T, Chowdhury R, Hall JA, Lina JM, Dubeau F, Kobayashi E, Grova C

Hum Brain Mapp. 2016 07;37(7):2528-46 Authors: Pellegrino G, Hedrich T, Chowdhury R, Hall JA, Lina JM, Dubeau F, Kobayashi E, Grova C

Article GUID: 27059157

Clinical yield of magnetoencephalography distributed source imaging in epilepsy: A comparison with equivalent current dipole method.

Author(s): Pellegrino G, Hedrich T, Chowdhury RA, Hall JA, Dubeau F, Lina JM, Kobayashi E, Grova C

Hum Brain Mapp. 2018 01;39(1):218-231 Authors: Pellegrino G, Hedrich T, Chowdhury RA, Hall JA, Dubeau F, Lina JM, Kobayashi E, Grova C

Article GUID: 29024165

Reproducibility of EEG-MEG fusion source analysis of interictal spikes: Relevance in presurgical evaluation of epilepsy.

Author(s): Chowdhury RA, Pellegrino G, Aydin Ü, Lina JM, Dubeau F, Kobayashi E, Grova C

Hum Brain Mapp. 2018 02;39(2):880-901 Authors: Chowdhury RA, Pellegrino G, Aydin Ü, Lina JM, Dubeau F, Kobayashi E, Grova C

Article GUID: 29164737

Disruption, emergence and lateralization of brain network hubs in mesial temporal lobe epilepsy.

Author(s): Lee K, Khoo HM, Lina JM, Dubeau F, Gotman J, Grova C

Neuroimage Clin. 2018;20:71-84 Authors: Lee K, Khoo HM, Lina JM, Dubeau F, Gotman J, Grova C

Article GUID: 30094158

Optimal positioning of optodes on the scalp for personalized functional near-infrared spectroscopy investigations.

Author(s): Machado A, Cai Z, Pellegrino G, Marcotte O, Vincent T, Lina JM, Kobayashi E, Grova C

J Neurosci Methods. 2018 Nov 01;309:91-108 Authors: Machado A, Cai Z, Pellegrino G, Marcotte O, Vincent T, Lina JM, Kobayashi E, Grova C

Article GUID: 30107210

Complex patterns of spatially extended generators of epileptic activity: Comparison of source localization methods cMEM and 4-ExSo-MUSIC on high resolution EEG and MEG data.

Author(s): Chowdhury RA, Merlet I, Birot G, Kobayashi E, Nica A, Biraben A, Wendling F, Lina JM, Albera L, Grova C...

Complex patterns of spatially extended generators of epileptic activity: Comparison of source localization methods cMEM and 4-ExSo-MUSIC on high resolution EEG and MEG data.

Neuroimage. 2...

Article GUID: 27561712

Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG.

Author(s): Hedrich T, Pellegrino G, Kobayashi E, Lina JM, Grova C

Neuroimage. 2017 08 15;157:531-544 Authors: Hedrich T, Pellegrino G, Kobayashi E, Lina JM, Grova C

Article GUID: 28619655

Beyond spindles: interactions between sleep spindles and boundary frequencies during cued reactivation of motor memory representations.

Author(s): Laventure S, Pinsard B, Lungu O, Carrier J, Fogel S, Benali H, Lina JM, Boutin A, Doyon J

Sleep. 2018 Sep 01;41(9): Authors: Laventure S, Pinsard B, Lungu O, Carrier J, Fogel S, Benali H, Lina JM, Boutin A, Doyon J

Article GUID: 30137521


Title:SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.
Authors:Lee KLina JMGotman JGrova C
Link:https://www.ncbi.nlm.nih.gov/pubmed/27046111?dopt=Abstract
Category:Neuroimage
PMID:27046111
Dept Affiliation: PERFORM
1 Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Duff Medical Building, 3775 Rue University, Montreal, QC H3A 2B4, Canada; Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada. Electronic address: kangjoo.lee@mail.mcgill.ca.
2 École de Technologie Supérieure, 1100 Rue Notre-Dame O, Montreal, QC H3C 1K3, Canada; Centre de Recherches Mathématiques, Université de Montréal, Pavillon André-Aisenstadt 2920 Chemin de la tour, Room 5357, Montreal, QC H3T 1J4, Canada.
3 Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada.
4 Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Duff Medical Building, 3775 Rue University, Montreal, QC H3A 2B4, Canada; Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC H3A 2B4, Canada; Centre de Recherches Mathématiques, Université de Montréal, Pavillon André-Aisenstadt 2920 Chemin de la tour, Room 5357, Montreal, QC H3T 1J4, Canada; Physics Department and PERFORM Centre, Concordia University, 7200 Rue Sherbrooke St. W, Montreal, QC H4B 1R6, Canada.

Description:

SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.

Neuroimage. 2016 07 01;134:434-449

Authors: Lee K, Lina JM, Gotman J, Grova C

Abstract

Functional hubs are defined as the specific brain regions with dense connections to other regions in a functional brain network. Among them, connector hubs are of great interests, as they are assumed to promote global and hierarchical communications between functionally specialized networks. Damage to connector hubs may have a more crucial effect on the system than does damage to other hubs. Hubs in graph theory are often identified from a correlation matrix, and classified as connector hubs when the hubs are more connected to regions in other networks than within the networks to which they belong. However, the identification of hubs from functional data is more complex than that from structural data, notably because of the inherent problem of multicollinearity between temporal dynamics within a functional network. In this context, we developed and validated a method to reliably identify connectors and corresponding overlapping network structure from resting-state fMRI. This new method is actually handling the multicollinearity issue, since it does not rely on counting the number of connections from a thresholded correlation matrix. The novelty of the proposed method is that besides counting the number of networks involved in each voxel, it allows us to identify which networks are actually involved in each voxel, using a data-driven sparse general linear model in order to identify brain regions involved in more than one network. Moreover, we added a bootstrap resampling strategy to assess statistically the reproducibility of our results at the single subject level. The unified framework is called SPARK, i.e. SParsity-based Analysis of Reliable k-hubness, where k-hubness denotes the number of networks overlapping in each voxel. The accuracy and robustness of SPARK were evaluated using two dimensional box simulations and realistic simulations that examined detection of artificial hubs generated on real data. Then, test/retest reliability of the method was assessed using the 1000 Functional Connectome Project database, which includes data obtained from 25 healthy subjects at three different occasions with long and short intervals between sessions. We demonstrated that SPARK provides an accurate and reliable estimation of k-hubness, suggesting a promising tool for understanding hub organization in resting-state fMRI.

PMID: 27046111 [PubMed - indexed for MEDLINE]