Keyword search (3,448 papers available)


Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis.

Author(s): Gold ND, Martin VJ

J Bacteriol. 2007 Oct;189(19):6787-95 Authors: Gold ND, Martin VJ

Article GUID: 17644599

Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose.

Author(s): Burton E, Martin VJ

Can J Microbiol. 2012 Dec;58(12):1378-88 Authors: Burton E, Martin VJ

Article GUID: 23210995

Expression of a library of fungal β-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain.

Author(s): Wilde C, Gold ND, Bawa N, Tambor JH, Mougharbel L, Storms R, Martin VJ

Appl Microbiol Biotechnol. 2012 Aug;95(3):647-59 Authors: Wilde C, Gold ND, Bawa N, Tambor JH, Mougharbel L, Storms R, Martin VJ

Article GUID: 22218767

Effects of synthetic cohesin-containing scaffold protein architecture on binding dockerin-enzyme fusions on the surface of Lactococcus lactis.

Author(s): Wieczorek AS, Martin VJ

Microb Cell Fact. 2012 Dec 15;11:160 Authors: Wieczorek AS, Martin VJ

Article GUID: 23241215

Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae.

Author(s): Fossati E, Ekins A, Narcross L, Zhu Y, Falgueyret JP, Beaudoin GA, Facchini PJ, Martin VJ

Nat Commun. 2014;5:3283 Authors: Fossati E, Ekins A, Narcross L, Zhu Y, Falgueyret JP, Beaudoin GA, Facchini PJ, Martin VJ

Article GUID: 24513861

Deconstructing the genetic basis of spent sulphite liquor tolerance using deep sequencing of genome-shuffled yeast.

Author(s): Pinel D, Colatriano D, Jiang H, Lee H, Martin VJ

Biotechnol Biofuels. 2015;8:53 Authors: Pinel D, Colatriano D, Jiang H, Lee H, Martin VJ

Article GUID: 25866561

Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae.

Author(s): Fossati E, Narcross L, Ekins A, Falgueyret JP, Martin VJ

PLoS One. 2015;10(4):e0124459 Authors: Fossati E, Narcross L, Ekins A, Falgueyret JP, Martin VJ

Article GUID: 25905794

An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose.

Author(s): DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJ, Dueber JE

Nat Chem Biol. 2015 Jul;11(7):465-71 Authors: DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJ, Dueber JE

Article GUID: 25984720

Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.

Author(s): Gold ND, Gowen CM, Lussier FX, Cautha SC, Mahadevan R, Martin VJ

Microb Cell Fact. 2015 May 28;14:73 Authors: Gold ND, Gowen CM, Lussier FX, Cautha SC, Mahadevan R, Martin VJ

Article GUID: 26016674

Directed evolution of a fungal β-glucosidase in Saccharomyces cerevisiae.

Author(s): Larue K, Melgar M, Martin VJ

Biotechnol Biofuels. 2016;9:52 Authors: Larue K, Melgar M, Martin VJ

Article GUID: 26949413

Engineering of a Nepetalactol-Producing Platform Strain of Saccharomyces cerevisiae for the Production of Plant Seco-Iridoids.

Author(s): Campbell A, Bauchart P, Gold ND, Zhu Y, De Luca V, Martin VJ

ACS Synth Biol. 2016 05 20;5(5):405-14 Authors: Campbell A, Bauchart P, Gold ND, Zhu Y, De Luca V, Martin VJ

Article GUID: 26981892

Seamless site-directed mutagenesis of the Saccharomyces cerevisiae genome using CRISPR-Cas9.

Author(s): Biot-Pelletier D, Martin VJ

J Biol Eng. 2016;10:6 Authors: Biot-Pelletier D, Martin VJ

Article GUID: 27134651

Reconstituting Plant Secondary Metabolism in Saccharomyces cerevisiae for Production of High-Value Benzylisoquinoline Alkaloids.

Author(s): Pyne ME, Narcross L, Fossati E, Bourgeois L, Burton E, Gold ND, Martin VJ

Methods Enzymol. 2016;575:195-224 Authors: Pyne ME, Narcross L, Fossati E, Bourgeois L, Burton E, Gold ND, Martin VJ

Article GUID: 27417930

Mining Enzyme Diversity of Transcriptome Libraries through DNA Synthesis for Benzylisoquinoline Alkaloid Pathway Optimization in Yeast.

Author(s): Narcross L, Bourgeois L, Fossati E, Burton E, Martin VJ

ACS Synth Biol. 2016 12 16;5(12):1505-1518 Authors: Narcross L, Bourgeois L, Fossati E, Burton E, Martin VJ

Article GUID: 27442619

Persistence of Escherichia coli in batch and continuous vermicomposting systems.

Author(s): Hénault-Ethier L, Martin VJ, Gélinas Y

Waste Manag. 2016 Oct;56:88-99 Authors: Hénault-Ethier L, Martin VJ, Gélinas Y

Article GUID: 27499290


Title:Persistence of Escherichia coli in batch and continuous vermicomposting systems.
Authors:Hénault-Ethier LMartin VJGélinas Y
Link:https://www.ncbi.nlm.nih.gov/pubmed/27499290?dopt=Abstract
Category:Waste Manag
PMID:27499290
Dept Affiliation: BIOLOGY
1 Department of Biology, Concordia University, Montreal, QC, Canada; GEOTOP Research Center, Montreal, QC, Canada.
2 Department of Biology, Concordia University, Montreal, QC, Canada.
3 GEOTOP Research Center, Montreal, QC, Canada; Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada. Electronic address: yves.gelinas@concordia.ca.

Description:

Persistence of Escherichia coli in batch and continuous vermicomposting systems.

Waste Manag. 2016 Oct;56:88-99

Authors: Hénault-Ethier L, Martin VJ, Gélinas Y

Abstract

Vermicomposting is a biooxidation process in which epigeicearthworms act in synergy with microbial populations to degrade organic matter. Vermicomposting does not go through a thermophilic stage as required by North American legislations for pathogen eradication. We examined the survival of a Green Fluorescent Protein (GFP) labeled Escherichia coli MG1655 as a model for the survival of pathogenic bacteria in both small-scale batch and medium-scale continuously-operated systems to discern the influence of the earthworm Eisenia fetida, nutrient content and the indigenous vermicompost microbial community on pathogen abundance. In batch systems, the microbial community had the greatest influence on the rapid decline of E. coli populations, and the effect of earthworms was only visible in microbially-impoverishedvermicomposts. No significant earthworm density-dependent relationship was observed on E. coli survival under continuous operation. E. coli numbers decreased below the US EPA compost sanitation guidelines of 10(3)Colony Forming Units (CFU)/g (dry weight) within 18-21days for both the small-scale batch and medium-scale continuous systems, but it took up to 51days without earthworms and with an impoverished microbial community to reach the legal limit. Nutrient replenishment (i.e. organic carbon) provided by continuous feed input did not appear to extend E. coli survival. In fact, longer survival of E. coli was noticed in treatments where less total and labile sugars were available, suggesting that sugars may support potentially antagonist bacteria in the vermicompost. Total N, pH and humidity did not appear to affect E. coli survival. Several opportunistic human pathogens may be found in vermicompost, and their populations are likely kept in check by antagonists.

PMID: 27499290 [PubMed - indexed for MEDLINE]