Keyword search (3,448 papers available)


Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis.

Author(s): Gold ND, Martin VJ

J Bacteriol. 2007 Oct;189(19):6787-95 Authors: Gold ND, Martin VJ

Article GUID: 17644599

Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose.

Author(s): Burton E, Martin VJ

Can J Microbiol. 2012 Dec;58(12):1378-88 Authors: Burton E, Martin VJ

Article GUID: 23210995

Expression of a library of fungal β-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain.

Author(s): Wilde C, Gold ND, Bawa N, Tambor JH, Mougharbel L, Storms R, Martin VJ

Appl Microbiol Biotechnol. 2012 Aug;95(3):647-59 Authors: Wilde C, Gold ND, Bawa N, Tambor JH, Mougharbel L, Storms R, Martin VJ

Article GUID: 22218767

Effects of synthetic cohesin-containing scaffold protein architecture on binding dockerin-enzyme fusions on the surface of Lactococcus lactis.

Author(s): Wieczorek AS, Martin VJ

Microb Cell Fact. 2012 Dec 15;11:160 Authors: Wieczorek AS, Martin VJ

Article GUID: 23241215

Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae.

Author(s): Fossati E, Ekins A, Narcross L, Zhu Y, Falgueyret JP, Beaudoin GA, Facchini PJ, Martin VJ

Nat Commun. 2014;5:3283 Authors: Fossati E, Ekins A, Narcross L, Zhu Y, Falgueyret JP, Beaudoin GA, Facchini PJ, Martin VJ

Article GUID: 24513861

Deconstructing the genetic basis of spent sulphite liquor tolerance using deep sequencing of genome-shuffled yeast.

Author(s): Pinel D, Colatriano D, Jiang H, Lee H, Martin VJ

Biotechnol Biofuels. 2015;8:53 Authors: Pinel D, Colatriano D, Jiang H, Lee H, Martin VJ

Article GUID: 25866561

Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae.

Author(s): Fossati E, Narcross L, Ekins A, Falgueyret JP, Martin VJ

PLoS One. 2015;10(4):e0124459 Authors: Fossati E, Narcross L, Ekins A, Falgueyret JP, Martin VJ

Article GUID: 25905794

An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose.

Author(s): DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJ, Dueber JE

Nat Chem Biol. 2015 Jul;11(7):465-71 Authors: DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJ, Dueber JE

Article GUID: 25984720

Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.

Author(s): Gold ND, Gowen CM, Lussier FX, Cautha SC, Mahadevan R, Martin VJ

Microb Cell Fact. 2015 May 28;14:73 Authors: Gold ND, Gowen CM, Lussier FX, Cautha SC, Mahadevan R, Martin VJ

Article GUID: 26016674

Directed evolution of a fungal β-glucosidase in Saccharomyces cerevisiae.

Author(s): Larue K, Melgar M, Martin VJ

Biotechnol Biofuels. 2016;9:52 Authors: Larue K, Melgar M, Martin VJ

Article GUID: 26949413

Engineering of a Nepetalactol-Producing Platform Strain of Saccharomyces cerevisiae for the Production of Plant Seco-Iridoids.

Author(s): Campbell A, Bauchart P, Gold ND, Zhu Y, De Luca V, Martin VJ

ACS Synth Biol. 2016 05 20;5(5):405-14 Authors: Campbell A, Bauchart P, Gold ND, Zhu Y, De Luca V, Martin VJ

Article GUID: 26981892

Seamless site-directed mutagenesis of the Saccharomyces cerevisiae genome using CRISPR-Cas9.

Author(s): Biot-Pelletier D, Martin VJ

J Biol Eng. 2016;10:6 Authors: Biot-Pelletier D, Martin VJ

Article GUID: 27134651

Reconstituting Plant Secondary Metabolism in Saccharomyces cerevisiae for Production of High-Value Benzylisoquinoline Alkaloids.

Author(s): Pyne ME, Narcross L, Fossati E, Bourgeois L, Burton E, Gold ND, Martin VJ

Methods Enzymol. 2016;575:195-224 Authors: Pyne ME, Narcross L, Fossati E, Bourgeois L, Burton E, Gold ND, Martin VJ

Article GUID: 27417930

Mining Enzyme Diversity of Transcriptome Libraries through DNA Synthesis for Benzylisoquinoline Alkaloid Pathway Optimization in Yeast.

Author(s): Narcross L, Bourgeois L, Fossati E, Burton E, Martin VJ

ACS Synth Biol. 2016 12 16;5(12):1505-1518 Authors: Narcross L, Bourgeois L, Fossati E, Burton E, Martin VJ

Article GUID: 27442619

Persistence of Escherichia coli in batch and continuous vermicomposting systems.

Author(s): Hénault-Ethier L, Martin VJ, Gélinas Y

Waste Manag. 2016 Oct;56:88-99 Authors: Hénault-Ethier L, Martin VJ, Gélinas Y

Article GUID: 27499290


Title:Mining Enzyme Diversity of Transcriptome Libraries through DNA Synthesis for Benzylisoquinoline Alkaloid Pathway Optimization in Yeast.
Authors:Narcross LBourgeois LFossati EBurton EMartin VJ
Link:https://www.ncbi.nlm.nih.gov/pubmed/27442619?dopt=Abstract
DOI:10.1021/acssynbio.6b00119
Category:ACS Synth Biol
PMID:27442619
Dept Affiliation: BIOLOGY
1 Department of Biology, Concordia University , Montréal, Québec H4B 1R6, Canada.
2 Centre for Structural and Functional Genomics, Concordia University , Montréal, Québec H4B 1R6, Canada.

Description:

Mining Enzyme Diversity of Transcriptome Libraries through DNA Synthesis for Benzylisoquinoline Alkaloid Pathway Optimization in Yeast.

ACS Synth Biol. 2016 12 16;5(12):1505-1518

Authors: Narcross L, Bourgeois L, Fossati E, Burton E, Martin VJ

Abstract

The ever-increasing quantity of data deposited to GenBank is a valuable resource for mining new enzyme activities. Falling costs of DNA synthesis enables metabolic engineers to take advantage of this resource for identifying superior or novel enzymes for pathway optimization. Previously, we reported synthesis of the benzylisoquinoline alkaloid dihydrosanguinarine in yeast from norlaudanosoline at a molar conversion of 1.5%. Molar conversion could be improved by reduction of the side-product N-methylcheilanthifoline, a key bottleneck in dihydrosanguinarine biosynthesis. Two pathway enzymes, an N-methyltransferase and a cytochrome P450 of the CYP719A subfamily, were implicated in the synthesis of the side-product. Here, we conducted an extensive screen to identify enzyme homologues whose coexpression reduces side-product synthesis. Phylogenetic trees were generated from multiple sources of sequence data to identify a library of candidate enzymes that were purchased codon-optimized and precloned into expression vectors designed to facilitate high-throughput analysis of gene expression as well as activity assay. Simple in vivo assays were sufficient to guide the selection of superior enzyme homologues that ablated the synthesis of the side-product, and improved molar conversion of norlaudanosoline to dihydrosanguinarine to 10%.

PMID: 27442619 [PubMed - indexed for MEDLINE]