Keyword search (3,448 papers available)


Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis.

Author(s): Gold ND, Martin VJ

J Bacteriol. 2007 Oct;189(19):6787-95 Authors: Gold ND, Martin VJ

Article GUID: 17644599

Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose.

Author(s): Burton E, Martin VJ

Can J Microbiol. 2012 Dec;58(12):1378-88 Authors: Burton E, Martin VJ

Article GUID: 23210995

Expression of a library of fungal β-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain.

Author(s): Wilde C, Gold ND, Bawa N, Tambor JH, Mougharbel L, Storms R, Martin VJ

Appl Microbiol Biotechnol. 2012 Aug;95(3):647-59 Authors: Wilde C, Gold ND, Bawa N, Tambor JH, Mougharbel L, Storms R, Martin VJ

Article GUID: 22218767

Effects of synthetic cohesin-containing scaffold protein architecture on binding dockerin-enzyme fusions on the surface of Lactococcus lactis.

Author(s): Wieczorek AS, Martin VJ

Microb Cell Fact. 2012 Dec 15;11:160 Authors: Wieczorek AS, Martin VJ

Article GUID: 23241215

Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae.

Author(s): Fossati E, Ekins A, Narcross L, Zhu Y, Falgueyret JP, Beaudoin GA, Facchini PJ, Martin VJ

Nat Commun. 2014;5:3283 Authors: Fossati E, Ekins A, Narcross L, Zhu Y, Falgueyret JP, Beaudoin GA, Facchini PJ, Martin VJ

Article GUID: 24513861

Deconstructing the genetic basis of spent sulphite liquor tolerance using deep sequencing of genome-shuffled yeast.

Author(s): Pinel D, Colatriano D, Jiang H, Lee H, Martin VJ

Biotechnol Biofuels. 2015;8:53 Authors: Pinel D, Colatriano D, Jiang H, Lee H, Martin VJ

Article GUID: 25866561

Synthesis of Morphinan Alkaloids in Saccharomyces cerevisiae.

Author(s): Fossati E, Narcross L, Ekins A, Falgueyret JP, Martin VJ

PLoS One. 2015;10(4):e0124459 Authors: Fossati E, Narcross L, Ekins A, Falgueyret JP, Martin VJ

Article GUID: 25905794

An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose.

Author(s): DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJ, Dueber JE

Nat Chem Biol. 2015 Jul;11(7):465-71 Authors: DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJ, Dueber JE

Article GUID: 25984720

Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.

Author(s): Gold ND, Gowen CM, Lussier FX, Cautha SC, Mahadevan R, Martin VJ

Microb Cell Fact. 2015 May 28;14:73 Authors: Gold ND, Gowen CM, Lussier FX, Cautha SC, Mahadevan R, Martin VJ

Article GUID: 26016674

Directed evolution of a fungal β-glucosidase in Saccharomyces cerevisiae.

Author(s): Larue K, Melgar M, Martin VJ

Biotechnol Biofuels. 2016;9:52 Authors: Larue K, Melgar M, Martin VJ

Article GUID: 26949413

Engineering of a Nepetalactol-Producing Platform Strain of Saccharomyces cerevisiae for the Production of Plant Seco-Iridoids.

Author(s): Campbell A, Bauchart P, Gold ND, Zhu Y, De Luca V, Martin VJ

ACS Synth Biol. 2016 05 20;5(5):405-14 Authors: Campbell A, Bauchart P, Gold ND, Zhu Y, De Luca V, Martin VJ

Article GUID: 26981892

Seamless site-directed mutagenesis of the Saccharomyces cerevisiae genome using CRISPR-Cas9.

Author(s): Biot-Pelletier D, Martin VJ

J Biol Eng. 2016;10:6 Authors: Biot-Pelletier D, Martin VJ

Article GUID: 27134651

Reconstituting Plant Secondary Metabolism in Saccharomyces cerevisiae for Production of High-Value Benzylisoquinoline Alkaloids.

Author(s): Pyne ME, Narcross L, Fossati E, Bourgeois L, Burton E, Gold ND, Martin VJ

Methods Enzymol. 2016;575:195-224 Authors: Pyne ME, Narcross L, Fossati E, Bourgeois L, Burton E, Gold ND, Martin VJ

Article GUID: 27417930

Mining Enzyme Diversity of Transcriptome Libraries through DNA Synthesis for Benzylisoquinoline Alkaloid Pathway Optimization in Yeast.

Author(s): Narcross L, Bourgeois L, Fossati E, Burton E, Martin VJ

ACS Synth Biol. 2016 12 16;5(12):1505-1518 Authors: Narcross L, Bourgeois L, Fossati E, Burton E, Martin VJ

Article GUID: 27442619

Persistence of Escherichia coli in batch and continuous vermicomposting systems.

Author(s): Hénault-Ethier L, Martin VJ, Gélinas Y

Waste Manag. 2016 Oct;56:88-99 Authors: Hénault-Ethier L, Martin VJ, Gélinas Y

Article GUID: 27499290


Title:Expression of a library of fungal β-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain.
Authors:Wilde CGold NDBawa NTambor JHMougharbel LStorms RMartin VJ
Link:https://www.ncbi.nlm.nih.gov/pubmed/22218767?dopt=Abstract
DOI:10.1007/s00253-011-3788-z
Category:Appl Microbiol Biotechnol
PMID:22218767
Dept Affiliation: GENOMICS
1 Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke West, Montréal, Québec H4B 1R6, Canada.

Description:

Expression of a library of fungal ß-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain.

Appl Microbiol Biotechnol. 2012 Aug;95(3):647-59

Authors: Wilde C, Gold ND, Bawa N, Tambor JH, Mougharbel L, Storms R, Martin VJ

Abstract

Converting cellulosic biomass to ethanol involves the enzymatic hydrolysis of cellulose and the fermentation of the resulting glucose. The yeast Saccharomyces cerevisiae is naturally ethanologenic, but lacks the enzymes necessary to degrade cellulose to glucose. Towards the goal of engineering S. cerevisiae for hydrolysis of and ethanol production from cellulose, 35 fungal ß-glucosidases (BGL) from the BGL1 and BGL5 families were screened for their ability to be functionally expressed and displayed on the cell surface. Activity assays revealed that the BGL families had different substrate specificities, with only the BGL1s displaying activity on their natural substrate, cellobiose. However, growth on cellobiose showed no correlation between the specific growth rates, the final cell titer, and the level of BGL1 activity that was expressed. One of the BGLs that expressed the highest levels of cellobiase activity, Aspergillus niger BGL1 (Anig-Bgl101), was then used for further studies directed at developing an efficient cellobiose-fermenting strain. Expressing Anig-Bgl101 from a plasmid yielded higher ethanol levels when secreted into the medium rather than anchored to the cell surface. In contrast, ethanol yields from anchored and secreted Anig-Bgl101 were comparable when integrated on the chromosome. Flow cytometry analysis revealed that chromosomal integration of Anig-Bgl101 resulted in a higher percentage of the cell population that displayed the enzyme but with overall lower expression levels.

PMID: 22218767 [PubMed - indexed for MEDLINE]