Keyword search (3,619 papers available)


Using intracellular plasmonics to characterize nanomorphology in human cells.

Author(s): Sohrabi Kashani A, Piekny A, Packirisamy M

Determining the characteristics and localization of nanoparticles inside cells is crucial for nanomedicine design for cancer therapy. Hyperspectral imaging is a fast, straightforward, reliable, and accurate method to study the interactions of nanoparticles ...

Article GUID: 33365137

Gold Nano-Island Platforms for Localized Surface Plasmon Resonance Sensing: A Short Review.

Author(s): Badilescu S, Raju D, Bathini S, Packirisamy M

Nano-islands are entities (droplets or other shapes) that are formed by spontaneous dewetting (agglomeration, in the early literature) of thin and very thin metallic (especially gold) films on a substrate, done by post-deposition heating or by using other s...

Article GUID: 33066088

Toward Task Autonomy in Robotic Cardiac Ablation: Learning-Based Kinematic Control of Soft Tendon-Driven Catheters.

Author(s): Jolaei M, Hooshiar A, Dargahi J, Packirisamy M

Soft Robot. 2020 Jul 14;: Authors: Jolaei M, Hooshiar A, Dargahi J, Packirisamy M

Article GUID: 32678722

Lab-On-A-Chip for the Development of Pro-/Anti-Angiogenic Nanomedicines to Treat Brain Diseases.

Author(s): Subramaniyan Parimalam S, Badilescu S, Sonenberg N, Bhat R, Packirisamy M

Int J Mol Sci. 2019 Dec 05;20(24): Authors: Subramaniyan Parimalam S, Badilescu S, Sonenberg N, Bhat R, Packirisamy M

Article GUID: 31817343

Nano-Bio Interactions of Extracellular Vesicles with Gold Nanoislands for Early Cancer Diagnosis.

Author(s): Bathini S, Raju D, Badilescu S, Kumar A, Ouellette RJ, Ghosh A, Packirisamy M

Res (Wash D C). 2018;2018:3917986 Authors: Bathini S, Raju D, Badilescu S, Kumar A, Ouellette RJ, Ghosh A, Packirisamy M

Article GUID: 31549028

Flow force augmented 3D suspended polymeric microfluidic (SPMF3 ) platform.

Author(s): Marzban M, Dargahi J, Packirisamy M

Electrophoresis. 2019 Feb;40(3):388-400 Authors: Marzban M, Dargahi J, Packirisamy M

Article GUID: 30025169

Tuning of Morphology and Stability of Gold Nanostars Through pH Adjustment.

Author(s): Kumar R, Badilescu S, Packirisamy M

J Nanosci Nanotechnol. 2019 Aug 01;19(8):4617-4622 Authors: Kumar R, Badilescu S, Packirisamy M

Article GUID: 30913757

Efficient Low Shear Flow-based Trapping of Biological Entities.

Author(s): Sohrabi Kashani A, Packirisamy M

Sci Rep. 2019 Apr 02;9(1):5511 Authors: Sohrabi Kashani A, Packirisamy M

Article GUID: 30940862

Acoustofluidic Micromixing Enabled Hybrid Integrated Colorimetric Sensing, for Rapid Point-of-Care Measurement of Salivary Potassium.

Author(s): Surendran V, Chiulli T, Manoharan S, Knisley S, Packirisamy M, Chandrasekaran A

Biosensors (Basel). 2019 May 28;9(2): Authors: Surendran V, Chiulli T, Manoharan S, Knisley S, Packirisamy M, Chandrasekaran A

Article GUID: 31141923

The effect of hydrogen nanobubbles on the morphology of gold-gelatin bionanocomposite films and their optical properties.

Author(s): Alsawafta M, Badilescu S, Truong VV, Packirisamy M

Nanotechnology. 2012 Feb 17;23(6):065305 Authors: Alsawafta M, Badilescu S, Truong VV, Packirisamy M

Article GUID: 22248640


Title:Flow force augmented 3D suspended polymeric microfluidic (SPMF3 ) platform.
Authors:Marzban MDargahi JPackirisamy M
Link:https://www.ncbi.nlm.nih.gov/pubmed/30025169?dopt=Abstract
Category:Electrophoresis
PMID:30025169
Dept Affiliation: ENCS
1 Optical-Bio Microsystems Lab. Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Québec, Canada.
2 Robotic Assisted Minimally Invasive Surgery Lab., Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Québec, Canada.

Description:

Flow force augmented 3D suspended polymeric microfluidic (SPMF3 ) platform.

Electrophoresis. 2019 Feb;40(3):388-400

Authors: Marzban M, Dargahi J, Packirisamy M

Abstract

Detection and study of bioelements using microfluidic systems has been of great interest in the biodiagnostics field. Microcantilevers are the most used systems in biodetection due to their implementation simplicity which have been used for a wide variety of applications ranging from cellular to molecular diagnosis. However, increasing further the sensitivity of the microcantilever systems have a great effect on the cantilever based sensing for chemical and bio applications. In order to improve further the performance of microcantilevers, a flow force augmented 3D suspended microchannel is proposed using which microparticles can be conveyed through a microchannel inside the microcantilever to the detection area. This innovative microchannel design addresses the low sensitivity issue by increasing its sensitivity up to 5 times than the earlier reported similar microsystems. Moreover, fabricating this microsystem out of Polydimethylsiloxane (PDMS) would eliminate external exciter dependency in many detection applications such as biodiagnostics. In this study, the designed microsystem has been analyzed theoretically, simulated and tested. Moreover, the microsystem has been fabricated and tested under different conditions, the results of which have been compared with simulation results. Finally, its innovative fabrication process and issues are reported and discussed.

PMID: 30025169 [PubMed - in process]