Keyword search (3,171 papers available)


Histone H3 lysine 4 trimethylation in sperm is transmitted to the embryo and associated with diet-induced phenotypes in the offspring.

Author(s): Lismer A, Dumeaux V, Lafleur C, Lambrot R, Brind'Amour J, Lorincz MC, Kimmins S

A father's lifestyle impacts offspring health; yet, the underlying molecular mechanisms remain elusive. We hypothesized that a diet that changes methyl donor availability will alter the sperm and embryo epigenomes to impact embryonic gene expression and...

Article GUID: 33596408

Atrx Deletion in Neurons Leads to Sexually Dimorphic Dysregulation of miR-137 and Spatial Learning and Memory Deficits.

Author(s): Tamming RJ, Dumeaux V, Jiang Y, Shafiq S, Langlois L, Ellegood J, Qiu LR, Lerch JP, Bérubé NG

Cell Rep. 2020 Jun 30;31(13):107838 Authors: Tamming RJ, Dumeaux V, Jiang Y, Shafiq S, Langlois L, Ellegood J, Qiu LR, Lerch JP, Bérubé NG

Article GUID: 32610139

Histone deacetylase 1 and 2 drive differentiation and fusion of progenitor cells in human placental trophoblasts.

Author(s): Jaju Bhattad G, Jeyarajah MJ, McGill MG, Dumeaux V, Okae H, Arima T, Lajoie P, Bérubé NG, Renaud SJ

Cell Death Dis. 2020 May 04;11(5):311 Authors: Jaju Bhattad G, Jeyarajah MJ, McGill MG, Dumeaux V, Okae H, Arima T, Lajoie P, Bérubé NG, Renaud SJ

Article GUID: 32366868

The time-varying effect of radiotherapy after breast-conserving surgery for DCIS.

Author(s): Rakovitch E, Sutradhar R, Hallett M, Thompson AM, Gu S, Dumeaux V, Whelan TJ, Paszat L

Breast Cancer Res Treat. 2019 Jul 31;: Authors: Rakovitch E, Sutradhar R, Hallett M, Thompson AM, Gu S, Dumeaux V, Whelan TJ, Paszat L

Article GUID: 31368035

Screening of Candida albicans GRACE library revealed a unique pattern of biofilm formation under repression of the essential gene ILS1.

Author(s): Costa ACBP, Omran RP, Correia-Mesquita TO, Dumeaux V, Whiteway M

Sci Rep. 2019 Jun 24;9(1):9187 Authors: Costa ACBP, Omran RP, Correia-Mesquita TO, Dumeaux V, Whiteway M

Article GUID: 31235750

Interactions between the tumor and the blood systemic response of breast cancer patients.

Author(s): Dumeaux V, Fjukstad B, Fjosne HE, Frantzen JO, Holmen MM, Rodegerdts E, Schlichting E, Børresen-Dale AL, Bongo LA, Lund E, Hallett M

PLoS Comput Biol. 2017 Sep;13(9):e1005680 Authors: Dumeaux V, Fjukstad B, Fjosne HE, Frantzen JO, Holmen MM, Rodegerdts E, Schlichting E, Børresen-Dale AL, Bongo LA, Lund E, Hallett M

Article GUID: 28957325

Mms21: A Putative SUMO E3 Ligase in Candida albicans That Negatively Regulates Invasiveness and Filamentation, and Is Required for the Genotoxic and Cellular Stress Response.

Author(s): Islam A, Tebbji F, Mallick J, Regan H, Dumeaux V, Omran RP, Whiteway M

Genetics. 2019 02;211(2):579-595 Authors: Islam A, Tebbji F, Mallick J, Regan H, Dumeaux V, Omran RP, Whiteway M

Article GUID: 30530734

Role of SUMOylation in differential ERα transcriptional repression by tamoxifen and fulvestrant in breast cancer cells.

Author(s): Traboulsi T, El Ezzy M, Dumeaux V, Audemard E, Mader S

Oncogene. 2019 02;38(7):1019-1037 Authors: Traboulsi T, El Ezzy M, Dumeaux V, Audemard E, Mader S

Article GUID: 30190545


Title:Mms21: A Putative SUMO E3 Ligase in Candida albicans That Negatively Regulates Invasiveness and Filamentation, and Is Required for the Genotoxic and Cellular Stress Response.
Authors:Islam ATebbji FMallick JRegan HDumeaux VOmran RPWhiteway M
Link:https://www.ncbi.nlm.nih.gov/pubmed/30530734?dopt=Abstract
Category:Genetics
PMID:30530734
Dept Affiliation: PERFORM
1 Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada.
2 Infectious Centre de Recherche en Infectiologie (CRI), Centre Hospitalier Universitaire de Quebec (CHUQ) Research Center, University Laval, Quebec City, Quebec G1V 4G2, Canada.
3 Prevention Evaluation Rehabilitation Formation (PERFORM) Centre, Concordia University, Montreal, Quebec H4B 1R6, Canada.
4 Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada malcolm.whiteway@concordia.ca.

Description:

Mms21: A Putative SUMO E3 Ligase in Candida albicans That Negatively Regulates Invasiveness and Filamentation, and Is Required for the Genotoxic and Cellular Stress Response.

Genetics. 2019 02;211(2):579-595

Authors: Islam A, Tebbji F, Mallick J, Regan H, Dumeaux V, Omran RP, Whiteway M

Abstract

In the life cycle of the fungal pathogen Candida albicans, the formation of filamentous cells is a differentiation process that is critically involved in host tissue invasion, and in adaptation to host cell and environmental stresses. Here, we have used the Gene Replacement And Conditional Expression library to identify genes controlling invasiveness and filamentation; conditional repression of the library revealed 69 mutants that triggered these processes. Intriguingly, the genes encoding the small ubiquitin-like modifier (SUMO) E3 ligase Mms21, and all other tested members of the sumoylation pathway, were both nonessential and capable of triggering filamentation upon repression, suggesting an important role for sumoylation in controlling filamentation in C. albicans We have investigated Mms21 in detail. Both Mms21 nulls (mms21?/?) and SP [Siz/Pias (protein inhibitor of activated signal transducer and activator of transcription)] domain (SUMO E3 ligase domain)-deleted mutants displayed invasiveness, filamentation, and abnormal nuclear segregation; filament formation occurred even in the absence of the hyphal transcription factor Efg1. Transcriptional analysis of mms21?/? showed an increase in expression from two- to eightfold above that of the wild-type for hyphal-specific genes, including ECE1, PGA13, PGA26, HWP1, ALS1, ALS3, SOD4, SOD5, UME6, and HGC1 The Mms21-deleted mutants were unable to recover from DNA-damaging agents like methyl methane sulfonate, hydroxyurea, hydrogen peroxide, and UV radiation, suggesting that the protein is important for genotoxic stress responses. In addition, the mms21?/? mutant displayed sensitivity to cell wall and thermal stresses, and to different antifungal drugs. All these findings suggest that Mms21 plays important roles in cellular differentiation, DNA damage and cellular stress responses, and in response to antifungal drugs.

PMID: 30530734 [PubMed - indexed for MEDLINE]