Keyword search (3,619 papers available)


Enzymatic Synthesis of a Fluorogenic Reporter Substrate and the Development of a High-Throughput Assay for Fucosyltransferase VIII Provide a Toolkit to Probe and Inhibit Core Fucosylation.

Author(s): Soroko M, Kwan DH

Biochemistry. 2020 Jun 01;: Authors: Soroko M, Kwan DH

Article GUID: 32441090

Identification of active site residues of chorismate mutase-prephenate dehydrogenase from Escherichia coli.

Author(s): Christendat D, Turnbull J

Identification of active site residues of chorismate mutase-prephenate dehydrogenase from Escherichia coli.

Biochemistry. 1996 Apr 09;35(14):4468-79

Authors: Christendat D, Turnbull J

Abstract
Chemical modification studies...

Article GUID: 8605196

Characterization of active and inactive forms of the phenol hydroxylase stimulatory protein DmpM.

Author(s): Cadieux E, Powlowski J

Biochemistry. 1999 Aug 17;38(33):10714-22 Authors: Cadieux E, Powlowski J

Article GUID: 10451366

S-nitrosation of Ca(2+)-loaded and Ca(2+)-free recombinant calbindin D(28K) from human brain.

Author(s): Tao L, Murphy ME, English AM

Biochemistry. 2002 May 14;41(19):6185-92 Authors: Tao L, Murphy ME, English AM

Article GUID: 11994015

Mechanism of S-nitrosation of recombinant human brain calbindin D28K.

Author(s): Tao L, English AM

Biochemistry. 2003 Mar 25;42(11):3326-34 Authors: Tao L, English AM

Article GUID: 12641465

Protein S-glutathiolation triggered by decomposed S-nitrosoglutathione.

Author(s): Tao L, English AM

Biochemistry. 2004 Apr 06;43(13):4028-38 Authors: Tao L, English AM

Article GUID: 15049710

Mass spectrometric analysis of nitroxyl-mediated protein modification: comparison of products formed with free and protein-based cysteines.

Author(s): Shen B, English AM

Biochemistry. 2005 Oct 25;44(42):14030-44 Authors: Shen B, English AM

Article GUID: 16229492

A shared binding site for NAD+ and coenzyme A in an acetaldehyde dehydrogenase involved in bacterial degradation of aromatic compounds.

Author(s): Lei Y, Pawelek PD, Powlowski J

Biochemistry. 2008 Jul 01;47(26):6870-82 Authors: Lei Y, Pawelek PD, Powlowski J

Article GUID: 18537268

Backbone Flexibility Influences Nucleotide Incorporation by Human Translesion DNA Polymerase η opposite Intrastrand Cross-Linked DNA.

Author(s): O'Flaherty DK, Guengerich FP, Egli M, Wilds CJ

Biochemistry. 2015 Dec 29;54(51):7449-56 Authors: O'Flaherty DK, Guengerich FP, Egli M, Wilds CJ

Article GUID: 26624500

Proton release due to manganese binding and oxidation in modified bacterial reaction centers.

Author(s): Kálmán L, Thielges MC, Williams JC, Allen JP

Biochemistry. 2005 Oct 11;44(40):13266-73 Authors: Kálmán L, Thielges MC, Williams JC, Allen JP

Article GUID: 16201752

Light-induced conformational changes in photosynthetic reaction centers: dielectric relaxation in the vicinity of the dimer.

Author(s): Deshmukh SS, Williams JC, Allen JP, Kálmán L

Biochemistry. 2011 Jan 25;50(3):340-8 Authors: Deshmukh SS, Williams JC, Allen JP, Kálmán L

Article GUID: 21141811

Light-induced conformational changes in photosynthetic reaction centers: redox-regulated proton pathway near the dimer.

Author(s): Deshmukh SS, Williams JC, Allen JP, Kálmán L

Biochemistry. 2011 Apr 26;50(16):3321-31 Authors: Deshmukh SS, Williams JC, Allen JP, Kálmán L

Article GUID: 21410139

Light-induced conformational changes in photosynthetic reaction centers: impact of detergents and lipids on the electronic structure of the primary electron donor.

Author(s): Deshmukh SS, Akhavein H, Williams JC, Allen JP, Kalman L

Biochemistry. 2011 Jun 14;50(23):5249-62 Authors: Deshmukh SS, Akhavein H, Williams JC, Allen JP, Kalman L

Article GUID: 21561160


Title:Identification of active site residues of chorismate mutase-prephenate dehydrogenase from Escherichia coli.
Authors:Christendat DTurnbull J
Link:www.ncbi.nlm.nih.gov/pubmed/8605196?dopt=Abstract
DOI:10.1021/bi9525637
Category:Biochemistry
PMID:8605196
Dept Affiliation: CHEMBIOCHEM
1 Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada.

Description:

Identification of active site residues of chorismate mutase-prephenate dehydrogenase from Escherichia coli.



Biochemistry. 1996 Apr 09;35(14):4468-79



Authors: Christendat D, Turnbull J



Abstract

Chemical modification studies of the bifunctional enzyme chorismate mutase-prephenate dehydrogenase and mass spectral analysis of peptide fragments containing modified residues are presented. The reaction with diethyl pyrocarbonate (DEPC) results in the modification of several enzymic groups, including a single histidine group essential for dehydrogenase activity and a single lysine residue essential for mutase activity. This conclusion is based on the following evidence. (1) Hydroxylamine rapidly restores dehydrogenase activity to the DEPC-inactivated enzyme without restoring mutase activity. (2) Mutase activity is also lost upon treatment of the enzyme with trinitrobenzene sulfonate. (3) The reactivity of the dehydrogenase to DEPC increases with pH, suggesting the participation of a group with a pKa of 7.0 in the dehydrogenase reaction. (4) Two peptides identified by differential peptide mapping had mass values matching those calculated for peptides comprising residues 127-135 (containing His131) and residues 36-48 (containing Lys37). In support of the idea that the residues being modified are within the active sites, we show that the substrates prephenate and nicotinamide adenine dinucleotide (NAD+) offer protection against inactivation of dehydrogenase activity while inactivation of mutase activity can be prevented by prephenate and a transition state analogue (3-endo-8-exo)-8-hydroxy-2-oxabicyclo[3.3.1]-non-6-ene-3,5-dicarboxylic acid (endo-oxabicyclic diacid). Lys37 is conserved among several chorismate mutases and may participate in catalysis by interacting with an ether oxygen between C-5 and C-8 of chorismate in the transition state. His131 may be assisting in a hydride transfer from prephenate to NAD+ in the dehydrogenase reaction.



PMID: 8605196 [PubMed - indexed for MEDLINE]