Keyword search (3,619 papers available)


Enzymatic Synthesis of a Fluorogenic Reporter Substrate and the Development of a High-Throughput Assay for Fucosyltransferase VIII Provide a Toolkit to Probe and Inhibit Core Fucosylation.

Author(s): Soroko M, Kwan DH

Biochemistry. 2020 Jun 01;: Authors: Soroko M, Kwan DH

Article GUID: 32441090

Identification of active site residues of chorismate mutase-prephenate dehydrogenase from Escherichia coli.

Author(s): Christendat D, Turnbull J

Identification of active site residues of chorismate mutase-prephenate dehydrogenase from Escherichia coli.

Biochemistry. 1996 Apr 09;35(14):4468-79

Authors: Christendat D, Turnbull J

Abstract
Chemical modification studies...

Article GUID: 8605196

Characterization of active and inactive forms of the phenol hydroxylase stimulatory protein DmpM.

Author(s): Cadieux E, Powlowski J

Biochemistry. 1999 Aug 17;38(33):10714-22 Authors: Cadieux E, Powlowski J

Article GUID: 10451366

S-nitrosation of Ca(2+)-loaded and Ca(2+)-free recombinant calbindin D(28K) from human brain.

Author(s): Tao L, Murphy ME, English AM

Biochemistry. 2002 May 14;41(19):6185-92 Authors: Tao L, Murphy ME, English AM

Article GUID: 11994015

Mechanism of S-nitrosation of recombinant human brain calbindin D28K.

Author(s): Tao L, English AM

Biochemistry. 2003 Mar 25;42(11):3326-34 Authors: Tao L, English AM

Article GUID: 12641465

Protein S-glutathiolation triggered by decomposed S-nitrosoglutathione.

Author(s): Tao L, English AM

Biochemistry. 2004 Apr 06;43(13):4028-38 Authors: Tao L, English AM

Article GUID: 15049710

Mass spectrometric analysis of nitroxyl-mediated protein modification: comparison of products formed with free and protein-based cysteines.

Author(s): Shen B, English AM

Biochemistry. 2005 Oct 25;44(42):14030-44 Authors: Shen B, English AM

Article GUID: 16229492

A shared binding site for NAD+ and coenzyme A in an acetaldehyde dehydrogenase involved in bacterial degradation of aromatic compounds.

Author(s): Lei Y, Pawelek PD, Powlowski J

Biochemistry. 2008 Jul 01;47(26):6870-82 Authors: Lei Y, Pawelek PD, Powlowski J

Article GUID: 18537268

Backbone Flexibility Influences Nucleotide Incorporation by Human Translesion DNA Polymerase η opposite Intrastrand Cross-Linked DNA.

Author(s): O'Flaherty DK, Guengerich FP, Egli M, Wilds CJ

Biochemistry. 2015 Dec 29;54(51):7449-56 Authors: O'Flaherty DK, Guengerich FP, Egli M, Wilds CJ

Article GUID: 26624500

Proton release due to manganese binding and oxidation in modified bacterial reaction centers.

Author(s): Kálmán L, Thielges MC, Williams JC, Allen JP

Biochemistry. 2005 Oct 11;44(40):13266-73 Authors: Kálmán L, Thielges MC, Williams JC, Allen JP

Article GUID: 16201752

Light-induced conformational changes in photosynthetic reaction centers: dielectric relaxation in the vicinity of the dimer.

Author(s): Deshmukh SS, Williams JC, Allen JP, Kálmán L

Biochemistry. 2011 Jan 25;50(3):340-8 Authors: Deshmukh SS, Williams JC, Allen JP, Kálmán L

Article GUID: 21141811

Light-induced conformational changes in photosynthetic reaction centers: redox-regulated proton pathway near the dimer.

Author(s): Deshmukh SS, Williams JC, Allen JP, Kálmán L

Biochemistry. 2011 Apr 26;50(16):3321-31 Authors: Deshmukh SS, Williams JC, Allen JP, Kálmán L

Article GUID: 21410139

Light-induced conformational changes in photosynthetic reaction centers: impact of detergents and lipids on the electronic structure of the primary electron donor.

Author(s): Deshmukh SS, Akhavein H, Williams JC, Allen JP, Kalman L

Biochemistry. 2011 Jun 14;50(23):5249-62 Authors: Deshmukh SS, Akhavein H, Williams JC, Allen JP, Kalman L

Article GUID: 21561160


Title:Light-induced conformational changes in photosynthetic reaction centers: impact of detergents and lipids on the electronic structure of the primary electron donor.
Authors:Deshmukh SSAkhavein HWilliams JCAllen JPKalman L
Link:https://www.ncbi.nlm.nih.gov/pubmed/21561160?dopt=Abstract
Category:Biochemistry
PMID:21561160
Dept Affiliation: PHYSICS
1 Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada.

Description:

Light-induced conformational changes in photosynthetic reaction centers: impact of detergents and lipids on the electronic structure of the primary electron donor.

Biochemistry. 2011 Jun 14;50(23):5249-62

Authors: Deshmukh SS, Akhavein H, Williams JC, Allen JP, Kalman L

Abstract

Light-induced hypsochromic shifts of the Q(y) absorption band of the bacteriochlorophyll dimer (P) from 865 to 850 nm were identified using continuous illumination of dark-adapted reaction centers (RCs) from Rhodobacter capsulatus when dispersed in the most commonly used detergent, the zwitterionic lauryl N-dimethylamine-N-oxide. Such a shift is known to be the consequence of the decreased degree of delocalization of P. A 2-fold acceleration of the recovery kinetics of P(+) was found in RCs that underwent light-induced structural changes compared to those where the P-band position did not change. The light-induced shift was irreversible except in the presence of a secondary electron donor. Prolonged (15 min) illumination resulted in a shift in the position of the P-band even in neutral or negatively charged detergents. In contrast, RCs reconstituted into liposomes made from lipids with different headgroup charges showed light-induced shifts only if shorter fatty acid chains were used. The light-induced conformational changes caused a prominent decrease of the redox potential of P ranging from 120 to 160 mV depending on the detergent compared to the potential of P in dark-adapted reaction centers. The measured light-induced potential decreases were 55 to 85 mV larger than those reported for reaction centers where the P-band position remained at 865 nm. The influence of structural factors, such as the delocalization of the electron hole on P(+), the involvement of Tyr M210, and the hydrophobic mismatch between the thickness of the hydrophobic belt of the detergent micelles or the lipid bilayer and the RC protein, on the spectral features and electron transfer kinetics is discussed.

PMID: 21561160 [PubMed - indexed for MEDLINE]